Loogle!
Result
Found 10 declarations mentioning SemidirectProduct.map.
- SemidirectProduct.map π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : Nβ β[Οβ] Gβ β* Nβ β[Οβ] Gβ - SemidirectProduct.map_comp_inl π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : (SemidirectProduct.map fn fg h).comp SemidirectProduct.inl = SemidirectProduct.inl.comp fn - SemidirectProduct.map_comp_inr π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : (SemidirectProduct.map fn fg h).comp SemidirectProduct.inr = SemidirectProduct.inr.comp fg - SemidirectProduct.rightHom_comp_map π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : SemidirectProduct.rightHom.comp (SemidirectProduct.map fn fg h) = fg.comp SemidirectProduct.rightHom - SemidirectProduct.map_left π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) (g : Nβ β[Οβ] Gβ) : ((SemidirectProduct.map fn fg h) g).left = fn g.left - SemidirectProduct.map_right π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) (g : Nβ β[Οβ] Gβ) : ((SemidirectProduct.map fn fg h) g).right = fg g.right - SemidirectProduct.map.eq_1 π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : SemidirectProduct.map fn fg h = { toFun := fun x => β¨fn x.left, fg x.rightβ©, map_one' := β―, map_mul' := β― } - SemidirectProduct.map_inl π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) (n : Nβ) : (SemidirectProduct.map fn fg h) (SemidirectProduct.inl n) = SemidirectProduct.inl (fn n) - SemidirectProduct.map_inr π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn : Nβ β* Nβ) (fg : Gβ β* Gβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) (g : Gβ) : (SemidirectProduct.map fn fg h) (SemidirectProduct.inr g) = SemidirectProduct.inr (fg g) - SemidirectProduct.map.congr_simp π Mathlib.GroupTheory.SemidirectProduct
{Nβ : Type u_4} {Gβ : Type u_5} {Nβ : Type u_6} {Gβ : Type u_7} [Group Nβ] [Group Gβ] [Group Nβ] [Group Gβ] {Οβ : Gβ β* MulAut Nβ} {Οβ : Gβ β* MulAut Nβ} (fn fnβ : Nβ β* Nβ) (e_fn : fn = fnβ) (fg fgβ : Gβ β* Gβ) (e_fg : fg = fgβ) (h : β (g : Gβ), fn.comp (MulEquiv.toMonoidHom (Οβ g)) = (MulEquiv.toMonoidHom (Οβ (fg g))).comp fn) : SemidirectProduct.map fn fg h = SemidirectProduct.map fnβ fgβ β―
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177