Loogle!
Result
Found 9 declarations mentioning SemidirectProduct.map.
- SemidirectProduct.map š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) : Nā ā[Ļā] Gā ā* Nā ā[Ļā] Gā - SemidirectProduct.map_comp_inl š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) : (SemidirectProduct.map fn fg h).comp SemidirectProduct.inl = SemidirectProduct.inl.comp fn - SemidirectProduct.map_comp_inr š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) : (SemidirectProduct.map fn fg h).comp SemidirectProduct.inr = SemidirectProduct.inr.comp fg - SemidirectProduct.rightHom_comp_map š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) : SemidirectProduct.rightHom.comp (SemidirectProduct.map fn fg h) = fg.comp SemidirectProduct.rightHom - SemidirectProduct.map_left š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) (g : Nā ā[Ļā] Gā) : ((SemidirectProduct.map fn fg h) g).left = fn g.left - SemidirectProduct.map_right š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) (g : Nā ā[Ļā] Gā) : ((SemidirectProduct.map fn fg h) g).right = fg g.right - SemidirectProduct.map.eq_1 š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) : SemidirectProduct.map fn fg h = { toFun := fun x => { left := fn x.left, right := fg x.right }, map_one' := āÆ, map_mul' := ⯠} - SemidirectProduct.map_inl š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) (n : Nā) : (SemidirectProduct.map fn fg h) (SemidirectProduct.inl n) = SemidirectProduct.inl (fn n) - SemidirectProduct.map_inr š Mathlib.GroupTheory.SemidirectProduct
{Nā : Type u_4} {Gā : Type u_5} {Nā : Type u_6} {Gā : Type u_7} [Group Nā] [Group Gā] [Group Nā] [Group Gā] {Ļā : Gā ā* MulAut Nā} {Ļā : Gā ā* MulAut Nā} (fn : Nā ā* Nā) (fg : Gā ā* Gā) (h : ā (g : Gā), fn.comp (MulEquiv.toMonoidHom (Ļā g)) = (MulEquiv.toMonoidHom (Ļā (fg g))).comp fn) (g : Gā) : (SemidirectProduct.map fn fg h) (SemidirectProduct.inr g) = SemidirectProduct.inr (fg g)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08