Loogle!
Result
Found 5 declarations mentioning SheafOfModules.Presentation.map.
- SheafOfModules.Presentation.map 📋 Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasSheafify J AddCommGrpCat] [J.WEqualsLocallyBijective AddCommGrpCat] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {C' : Type u₂} [CategoryTheory.Category.{v₂, u₂} C'] {J' : CategoryTheory.GrothendieckTopology C'} {S : CategoryTheory.Sheaf J' RingCat} [CategoryTheory.HasSheafify J' AddCommGrpCat] [J'.WEqualsLocallyBijective AddCommGrpCat] [J'.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {M : SheafOfModules R} (P : M.Presentation) (F : CategoryTheory.Functor (SheafOfModules R) (SheafOfModules S)) [CategoryTheory.Limits.PreservesColimitsOfSize.{u, u, max u u₁, max u u₂, max (max (u + 1) u₁) v₁, max (max (u + 1) u₂) v₂} F] (η : F.obj (SheafOfModules.unit R) ≅ SheafOfModules.unit S) : (F.obj M).Presentation - SheafOfModules.Presentation.map_generators_I 📋 Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasSheafify J AddCommGrpCat] [J.WEqualsLocallyBijective AddCommGrpCat] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {C' : Type u₂} [CategoryTheory.Category.{v₂, u₂} C'] {J' : CategoryTheory.GrothendieckTopology C'} {S : CategoryTheory.Sheaf J' RingCat} [CategoryTheory.HasSheafify J' AddCommGrpCat] [J'.WEqualsLocallyBijective AddCommGrpCat] [J'.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {M : SheafOfModules R} (P : M.Presentation) (F : CategoryTheory.Functor (SheafOfModules R) (SheafOfModules S)) [CategoryTheory.Limits.PreservesColimitsOfSize.{u, u, max u u₁, max u u₂, max (max (u + 1) u₁) v₁, max (max (u + 1) u₂) v₂} F] (η : F.obj (SheafOfModules.unit R) ≅ SheafOfModules.unit S) : (P.map F η).generators.I = P.generators.I - SheafOfModules.Presentation.quasicoherentData_presentation 📋 Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Limits.HasBinaryProducts C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasSheafify J AddCommGrpCat] [J.WEqualsLocallyBijective AddCommGrpCat] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] [∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] [∀ (X : C), CategoryTheory.HasSheafify (J.over X) AddCommGrpCat] [∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrpCat] {M : SheafOfModules R} (P : M.Presentation) (x : C) : P.quasicoherentData.presentation x = P.map (SheafOfModules.pushforward (CategoryTheory.CategoryStruct.id (R.over x))) (CategoryTheory.Iso.refl ((SheafOfModules.pushforward (CategoryTheory.CategoryStruct.id (R.over x))).obj (SheafOfModules.unit R))) - SheafOfModules.Presentation.map_π_eq 📋 Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasSheafify J AddCommGrpCat] [J.WEqualsLocallyBijective AddCommGrpCat] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {C' : Type u₂} [CategoryTheory.Category.{v₂, u₂} C'] {J' : CategoryTheory.GrothendieckTopology C'} {S : CategoryTheory.Sheaf J' RingCat} [CategoryTheory.HasSheafify J' AddCommGrpCat] [J'.WEqualsLocallyBijective AddCommGrpCat] [J'.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {M : SheafOfModules R} (P : M.Presentation) (F : CategoryTheory.Functor (SheafOfModules R) (SheafOfModules S)) [CategoryTheory.Limits.PreservesColimitsOfSize.{u, u, max u u₁, max u u₂, max (max (u + 1) u₁) v₁, max (max (u + 1) u₂) v₂} F] (η : F.obj (SheafOfModules.unit R) ≅ SheafOfModules.unit S) : (P.map F η).generators.π = CategoryTheory.CategoryStruct.comp (SheafOfModules.mapFree F η P.generators.I).inv (F.map P.generators.π) - SheafOfModules.Presentation.map_relations_I 📋 Mathlib.Algebra.Category.ModuleCat.Sheaf.Quasicoherent
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {J : CategoryTheory.GrothendieckTopology C} {R : CategoryTheory.Sheaf J RingCat} [CategoryTheory.HasSheafify J AddCommGrpCat] [J.WEqualsLocallyBijective AddCommGrpCat] [J.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {C' : Type u₂} [CategoryTheory.Category.{v₂, u₂} C'] {J' : CategoryTheory.GrothendieckTopology C'} {S : CategoryTheory.Sheaf J' RingCat} [CategoryTheory.HasSheafify J' AddCommGrpCat] [J'.WEqualsLocallyBijective AddCommGrpCat] [J'.HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrpCat)] {M : SheafOfModules R} (P : M.Presentation) (F : CategoryTheory.Functor (SheafOfModules R) (SheafOfModules S)) [CategoryTheory.Limits.PreservesColimitsOfSize.{u, u, max u u₁, max u u₂, max (max (u + 1) u₁) v₁, max (max (u + 1) u₂) v₂} F] (η : F.obj (SheafOfModules.unit R) ≅ SheafOfModules.unit S) : (P.map F η).relations.I = P.relations.I
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 36960b0 serving mathlib revision 9a4cf1d