Loogle!
Result
Found 24 declarations mentioning Sigma.map.
- Sigma.map 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} (f₁ : α₁ → α₂) (f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)) (x : Sigma β₁) : Sigma β₂ - Function.Injective.of_sigma_map 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} {f₁ : α₁ → α₂} {f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)} (h : Function.Injective (Sigma.map f₁ f₂)) (a : α₁) : Function.Injective (f₂ a) - Sigma.map_mk 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} (f₁ : α₁ → α₂) (f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)) (x : α₁) (y : β₁ x) : Sigma.map f₁ f₂ ⟨x, y⟩ = ⟨f₁ x, f₂ x y⟩ - Function.Injective.sigma_map 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} {f₁ : α₁ → α₂} {f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)} (h₁ : Function.Injective f₁) (h₂ : ∀ (a : α₁), Function.Injective (f₂ a)) : Function.Injective (Sigma.map f₁ f₂) - Function.Surjective.sigma_map 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} {f₁ : α₁ → α₂} {f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)} (h₁ : Function.Surjective f₁) (h₂ : ∀ (a : α₁), Function.Surjective (f₂ a)) : Function.Surjective (Sigma.map f₁ f₂) - Function.Injective.sigma_map_iff 📋 Mathlib.Data.Sigma.Basic
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} {f₁ : α₁ → α₂} {f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)} (h₁ : Function.Injective f₁) : Function.Injective (Sigma.map f₁ f₂) ↔ ∀ (a : α₁), Function.Injective (f₂ a) - Equiv.sigmaSumDistrib_symm_apply 📋 Mathlib.Logic.Equiv.Sum
{ι : Type u_11} (α : ι → Type u_9) (β : ι → Type u_10) (a✝ : (i : ι) × α i ⊕ (i : ι) × β i) : (Equiv.sigmaSumDistrib α β).symm a✝ = Sum.elim (Sigma.map id fun x => Sum.inl) (Sigma.map id fun x => Sum.inr) a✝ - Function.Embedding.sigmaMap_apply 📋 Mathlib.Logic.Embedding.Basic
{α : Type u_1} {α' : Type u_2} {β : α → Type u_3} {β' : α' → Type u_4} (f : α ↪ α') (g : (a : α) → β a ↪ β' (f a)) (x : (a : α) × β a) : (f.sigmaMap g) x = Sigma.map (⇑f) (fun a => ⇑(g a)) x - Sigma.map.eq_1 📋 Mathlib.Data.Set.Sigma
{α₁ : Type u_2} {α₂ : Type u_3} {β₁ : α₁ → Type u_5} {β₂ : α₂ → Type u_6} (f₁ : α₁ → α₂) (f₂ : (a : α₁) → β₁ a → β₂ (f₁ a)) (x : Sigma β₁) : Sigma.map f₁ f₂ x = ⟨f₁ x.fst, f₂ x.fst x.snd⟩ - Set.preimage_sigmaMap_sigma 📋 Mathlib.Data.Set.Sigma
{ι : Type u_1} {ι' : Type u_2} {α : ι → Type u_3} {α' : ι' → Type u_7} (f : ι → ι') (g : (i : ι) → α i → α' (f i)) (s : Set ι') (t : (i : ι') → Set (α' i)) : Sigma.map f g ⁻¹' s.sigma t = (f ⁻¹' s).sigma fun i => g i ⁻¹' t (f i) - Set.image_sigmaMk_preimage_sigmaMap 📋 Mathlib.Data.Set.Sigma
{ι : Type u_1} {ι' : Type u_2} {α : ι → Type u_3} {β : ι' → Type u_4} {f : ι → ι'} (hf : Function.Injective f) (g : (i : ι) → α i → β (f i)) (i : ι) (s : Set (β (f i))) : Sigma.mk i '' (g i ⁻¹' s) = Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s) - Set.image_sigmaMk_preimage_sigmaMap_subset 📋 Mathlib.Data.Set.Sigma
{ι : Type u_1} {ι' : Type u_2} {α : ι → Type u_3} {β : ι' → Type u_4} (f : ι → ι') (g : (i : ι) → α i → β (f i)) (i : ι) (s : Set (β (f i))) : Sigma.mk i '' (g i ⁻¹' s) ⊆ Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s) - Filter.map_sigma_mk_comap 📋 Mathlib.Order.Filter.Bases.Basic
{α : Type u_1} {β : Type u_2} {π : α → Type u_6} {π' : β → Type u_7} {f : α → β} (hf : Function.Injective f) (g : (a : α) → π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : Filter.map (Sigma.mk a) (Filter.comap (g a) l) = Filter.comap (Sigma.map f g) (Filter.map (Sigma.mk (f a)) l) - Continuous.sigma_map 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} (hf : ∀ (i : ι), Continuous (f₂ i)) : Continuous (Sigma.map f₁ f₂) - continuous_sigma_map 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} : Continuous (Sigma.map f₁ f₂) ↔ ∀ (i : ι), Continuous (f₂ i) - isOpenMap_sigma_map 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} : IsOpenMap (Sigma.map f₁ f₂) ↔ ∀ (i : ι), IsOpenMap (f₂ i) - Topology.isEmbedding_sigmaMap 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} (h : Function.Injective f₁) : Topology.IsEmbedding (Sigma.map f₁ f₂) ↔ ∀ (i : ι), Topology.IsEmbedding (f₂ i) - Topology.isInducing_sigmaMap 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} (h₁ : Function.Injective f₁) : Topology.IsInducing (Sigma.map f₁ f₂) ↔ ∀ (i : ι), Topology.IsInducing (f₂ i) - Topology.isOpenEmbedding_sigmaMap 📋 Mathlib.Topology.Constructions
{ι : Type u_5} {κ : Type u_6} {σ : ι → Type u_7} {τ : κ → Type u_8} [(i : ι) → TopologicalSpace (σ i)] [(k : κ) → TopologicalSpace (τ k)] {f₁ : ι → κ} {f₂ : (i : ι) → σ i → τ (f₁ i)} (h : Function.Injective f₁) : Topology.IsOpenEmbedding (Sigma.map f₁ f₂) ↔ ∀ (i : ι), Topology.IsOpenEmbedding (f₂ i) - IsHomeomorph.sigmaMap 📋 Mathlib.Topology.Homeomorph.Lemmas
{ι : Type u_6} {κ : Type u_7} {X : ι → Type u_8} {Y : κ → Type u_9} [(i : ι) → TopologicalSpace (X i)] [(i : κ) → TopologicalSpace (Y i)] {f : ι → κ} (hf : Function.Bijective f) {g : (i : ι) → X i → Y (f i)} (hg : ∀ (i : ι), IsHomeomorph (g i)) : IsHomeomorph (Sigma.map f g) - Sigma.VAdd.eq_1 📋 Mathlib.Algebra.Group.Action.Sigma
{ι : Type u_1} {M : Type u_2} {α : ι → Type u_4} [(i : ι) → VAdd M (α i)] : Sigma.VAdd = { vadd := fun a => Sigma.map id fun x x_1 => a +ᵥ x_1 } - Sigma.instSMul_mathlib.eq_1 📋 Mathlib.Algebra.Group.Action.Sigma
{ι : Type u_1} {M : Type u_2} {α : ι → Type u_4} [(i : ι) → SMul M (α i)] : Sigma.instSMul_mathlib = { smul := fun a => Sigma.map id fun x x_1 => a • x_1 } - Sigma.smul_def 📋 Mathlib.Algebra.Group.Action.Sigma
{ι : Type u_1} {M : Type u_2} {α : ι → Type u_4} [(i : ι) → SMul M (α i)] (a : M) (x : (i : ι) × α i) : a • x = Sigma.map id (fun x x_1 => a • x_1) x - Sigma.vadd_def 📋 Mathlib.Algebra.Group.Action.Sigma
{ι : Type u_1} {M : Type u_2} {α : ι → Type u_4} [(i : ι) → VAdd M (α i)] (a : M) (x : (i : ι) × α i) : a +ᵥ x = Sigma.map id (fun x x_1 => a +ᵥ x_1) x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65