Loogle!
Result
Found 21 declarations mentioning SimpleGraph.Subgraph.map.
- SimpleGraph.Subgraph.map ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) : G'.Subgraph - SimpleGraph.Subgraph.map_id ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {G : SimpleGraph V} (H : G.Subgraph) : SimpleGraph.Subgraph.map SimpleGraph.Hom.id H = H - SimpleGraph.Subgraph.map_iso_top ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {H : SimpleGraph W} (e : G โg H) : SimpleGraph.Subgraph.map e.toHom โค = โค - SimpleGraph.map_singletonSubgraph ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') {v : V} : SimpleGraph.Subgraph.map f (G.singletonSubgraph v) = G'.singletonSubgraph (f v) - SimpleGraph.Subgraph.map_hom_top ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {G : SimpleGraph V} (G' : G.Subgraph) : SimpleGraph.Subgraph.map G'.hom โค = G' - SimpleGraph.Subgraph.map_verts ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) : (SimpleGraph.Subgraph.map f H).verts = โf '' H.verts - SimpleGraph.Subgraph.map_comp ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} {U : Type u_2} {G'' : SimpleGraph U} (H : G.Subgraph) (f : G โg G') (g : G' โg G'') : SimpleGraph.Subgraph.map (g.comp f) H = SimpleGraph.Subgraph.map g (SimpleGraph.Subgraph.map f H) - SimpleGraph.Subgraph.map_sup ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (Hโ Hโ : G.Subgraph) : SimpleGraph.Subgraph.map f (Hโ โ Hโ) = SimpleGraph.Subgraph.map f Hโ โ SimpleGraph.Subgraph.map f Hโ - SimpleGraph.Subgraph.edgeSet_map ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) : (SimpleGraph.Subgraph.map f H).edgeSet = Sym2.map โf '' H.edgeSet - SimpleGraph.Subgraph.map_monotone ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} {f : G โg G'} : Monotone (SimpleGraph.Subgraph.map f) - SimpleGraph.Subgraph.map_adj ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) (aโ aโยน : W) : (SimpleGraph.Subgraph.map f H).Adj aโ aโยน = Relation.Map H.Adj (โf) (โf) aโ aโยน - SimpleGraph.map_subgraphOfAdj ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') {v w : V} (hvw : G.Adj v w) : SimpleGraph.Subgraph.map f (G.subgraphOfAdj hvw) = G'.subgraphOfAdj โฏ - SimpleGraph.Subgraph.map_mono ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} {f : G โg G'} {Hโ Hโ : G.Subgraph} (hH : Hโ โค Hโ) : SimpleGraph.Subgraph.map f Hโ โค SimpleGraph.Subgraph.map f Hโ - SimpleGraph.Subgraph.map_le_iff_le_comap ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) (H' : G'.Subgraph) : SimpleGraph.Subgraph.map f H โค H' โ H โค SimpleGraph.Subgraph.comap f H' - SimpleGraph.Subgraph.map.eq_1 ๐ Mathlib.Combinatorics.SimpleGraph.Subgraph
{V : Type u} {W : Type v} {G : SimpleGraph V} {G' : SimpleGraph W} (f : G โg G') (H : G.Subgraph) : SimpleGraph.Subgraph.map f H = { verts := โf '' H.verts, Adj := Relation.Map H.Adj โf โf, adj_sub := โฏ, edge_vert := โฏ, symm := โฏ } - SimpleGraph.Walk.toSubgraph_map ๐ Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} (f : G โg G') (p : G.Walk u v) : (SimpleGraph.Walk.map f p).toSubgraph = SimpleGraph.Subgraph.map f p.toSubgraph - SimpleGraph.Copy.isoSubgraphMap ๐ Mathlib.Combinatorics.SimpleGraph.Copy
{ฮฑ : Type u_4} {ฮฒ : Type u_5} {A : SimpleGraph ฮฑ} {B : SimpleGraph ฮฒ} (f : A.Copy B) (A' : A.Subgraph) : A'.coe โg (SimpleGraph.Subgraph.map f.toHom A').coe - SimpleGraph.Subgraph.Copy.map ๐ Mathlib.Combinatorics.SimpleGraph.Copy
{ฮฑ : Type u_4} {ฮฒ : Type u_5} {A : SimpleGraph ฮฑ} {B : SimpleGraph ฮฒ} (f : A.Copy B) (A' : A.Subgraph) : A'.coe โg (SimpleGraph.Subgraph.map f.toHom A').coe - SimpleGraph.Subgraph.IsMatching.map_ofLE ๐ Mathlib.Combinatorics.SimpleGraph.Matching
{V : Type u_1} {G G' : SimpleGraph V} {M : G.Subgraph} (h : M.IsMatching) (hGG' : G โค G') : (SimpleGraph.Subgraph.map (SimpleGraph.Hom.ofLE hGG') M).IsMatching - SimpleGraph.Subgraph.Iso.isMatching_map ๐ Mathlib.Combinatorics.SimpleGraph.Matching
{V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {M : G.Subgraph} (f : G โg G') : (SimpleGraph.Subgraph.map f.toHom M).IsMatching โ M.IsMatching - SimpleGraph.Subgraph.IsMatching.map ๐ Mathlib.Combinatorics.SimpleGraph.Matching
{V : Type u_1} {W : Type u_2} {G : SimpleGraph V} {G' : SimpleGraph W} {M : G.Subgraph} (f : G โg G') (hf : Function.Injective โf) (hM : M.IsMatching) : (SimpleGraph.Subgraph.map f M).IsMatching
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65