Loogle!
Result
Found 34 declarations mentioning SimpleGraph.Walk.map.
- SimpleGraph.Walk.map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} : G.Walk u v β G'.Walk (f u) (f v) - SimpleGraph.Walk.map_id π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v) : SimpleGraph.Walk.map SimpleGraph.Hom.id p = p - SimpleGraph.Walk.transfer_eq_map_ofLE π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v) {H : SimpleGraph V} (hp : β e β p.edges, e β H.edgeSet) (GH : G β€ H) : p.transfer H hp = SimpleGraph.Walk.map (SimpleGraph.Hom.ofLE GH) p - SimpleGraph.Walk.transfer_eq_map_of_le π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v) {H : SimpleGraph V} (hp : β e β p.edges, e β H.edgeSet) (GH : G β€ H) : p.transfer H hp = SimpleGraph.Walk.map (SimpleGraph.Hom.ofLE GH) p - SimpleGraph.Walk.length_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).length = p.length - SimpleGraph.Walk.map_nil π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u : V} : SimpleGraph.Walk.map f SimpleGraph.Walk.nil = SimpleGraph.Walk.nil - SimpleGraph.Walk.map_injective_of_injective π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} (hinj : Function.Injective βf) (u v : V) : Function.Injective (SimpleGraph.Walk.map f) - SimpleGraph.Walk.darts_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).darts = List.map f.mapDart p.darts - SimpleGraph.Walk.support_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).support = List.map (βf) p.support - SimpleGraph.Walk.map_eq_nil_iff π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u : V} {p : G.Walk u u} : SimpleGraph.Walk.map f p = SimpleGraph.Walk.nil β p = SimpleGraph.Walk.nil - SimpleGraph.Walk.edgeSet_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).edgeSet = Sym2.map βf '' p.edgeSet - SimpleGraph.Walk.edges_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).edges = List.map (Sym2.map βf) p.edges - SimpleGraph.Walk.reverse_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).reverse = SimpleGraph.Walk.map f p.reverse - SimpleGraph.Walk.map_toDeleteEdges_eq π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {G : SimpleGraph V} {v w : V} (s : Set (Sym2 V)) {p : G.Walk v w} (hp : β e β p.edges, e β s) : SimpleGraph.Walk.map (SimpleGraph.Hom.ofLE β―) (SimpleGraph.Walk.toDeleteEdges s p hp) = p - SimpleGraph.Walk.map_append π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v w : V} (p : G.Walk u v) (q : G.Walk v w) : SimpleGraph.Walk.map f (p.append q) = (SimpleGraph.Walk.map f p).append (SimpleGraph.Walk.map f q) - SimpleGraph.Walk.map_cons π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) {w : V} (h : G.Adj w u) : SimpleGraph.Walk.map f (SimpleGraph.Walk.cons h p) = SimpleGraph.Walk.cons β― (SimpleGraph.Walk.map f p) - SimpleGraph.Walk.map_map π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {V'' : Type w} {G : SimpleGraph V} {G' : SimpleGraph V'} {G'' : SimpleGraph V''} (f : G βg G') (f' : G' βg G'') {u v : V} (p : G.Walk u v) : SimpleGraph.Walk.map f' (SimpleGraph.Walk.map f p) = SimpleGraph.Walk.map (f'.comp f) p - SimpleGraph.Walk.map_copy π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v u' v' : V} (p : G.Walk u v) (hu : u = u') (hv : v = v') : SimpleGraph.Walk.map f (p.copy hu hv) = (SimpleGraph.Walk.map f p).copy β― β― - SimpleGraph.Walk.map_eq_of_eq π Mathlib.Combinatorics.SimpleGraph.Walk
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} (p : G.Walk u v) {f : G βg G'} (f' : G βg G') (h : f = f') : SimpleGraph.Walk.map f p = (SimpleGraph.Walk.map f' p).copy β― β― - SimpleGraph.Walk.IsCycle.map π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u : V} {p : G.Walk u u} (hinj : Function.Injective βf) : p.IsCycle β (SimpleGraph.Walk.map f p).IsCycle - SimpleGraph.Walk.IsPath.of_map π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} {p : G.Walk u v} {f : G βg G'} (hp : (SimpleGraph.Walk.map f p).IsPath) : p.IsPath - SimpleGraph.Walk.map_isCycle_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u : V} {p : G.Walk u u} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsCycle β p.IsCycle - SimpleGraph.Walk.map_isPath_of_injective π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) (hp : p.IsPath) : (SimpleGraph.Walk.map f p).IsPath - SimpleGraph.Walk.map_isTrail_of_injective π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : p.IsTrail β (SimpleGraph.Walk.map f p).IsTrail - SimpleGraph.Walk.map_isPath_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsPath β p.IsPath - SimpleGraph.Walk.map_isTrail_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsTrail β p.IsTrail - SimpleGraph.Path.mapEmbedding_coe π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βͺg G') {u v : V} (p : G.Path u v) : β(SimpleGraph.Path.mapEmbedding f p) = SimpleGraph.Walk.map f.toHom βp - SimpleGraph.Path.map_coe π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') (hinj : Function.Injective βf) {u v : V} (p : G.Path u v) : β(SimpleGraph.Path.map f hinj p) = SimpleGraph.Walk.map f βp - SimpleGraph.Path.map.eq_1 π Mathlib.Combinatorics.SimpleGraph.Path
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') (hinj : Function.Injective βf) {u v : V} (p : G.Path u v) : SimpleGraph.Path.map f hinj p = β¨SimpleGraph.Walk.map f βp, β―β© - SimpleGraph.Walk.boxProdLeft.eq_1 π Mathlib.Combinatorics.SimpleGraph.Prod
{Ξ± : Type u_1} {Ξ² : Type u_2} {G : SimpleGraph Ξ±} (H : SimpleGraph Ξ²) {aβ aβ : Ξ±} (b : Ξ²) : SimpleGraph.Walk.boxProdLeft H b = SimpleGraph.Walk.map (G.boxProdLeft H b).toHom - SimpleGraph.Walk.boxProdRight.eq_1 π Mathlib.Combinatorics.SimpleGraph.Prod
{Ξ± : Type u_1} {Ξ² : Type u_2} (G : SimpleGraph Ξ±) {H : SimpleGraph Ξ²} {bβ bβ : Ξ²} (a : Ξ±) : SimpleGraph.Walk.boxProdRight G a = SimpleGraph.Walk.map (G.boxProdRight H a).toHom - SimpleGraph.Walk.toSubgraph_map π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} (f : G βg G') (p : G.Walk u v) : (SimpleGraph.Walk.map f p).toSubgraph = SimpleGraph.Subgraph.map f p.toSubgraph - SimpleGraph.Walk.IsHamiltonianCycle.map π Mathlib.Combinatorics.SimpleGraph.Hamiltonian
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ±] [DecidableEq Ξ²] {G : SimpleGraph Ξ±} {a : Ξ±} {p : G.Walk a a} {H : SimpleGraph Ξ²} (f : G βg H) (hf : Function.Bijective βf) (hp : p.IsHamiltonianCycle) : (SimpleGraph.Walk.map f p).IsHamiltonianCycle - SimpleGraph.Walk.IsHamiltonian.map π Mathlib.Combinatorics.SimpleGraph.Hamiltonian
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ±] [DecidableEq Ξ²] {G : SimpleGraph Ξ±} {a b : Ξ±} {p : G.Walk a b} {H : SimpleGraph Ξ²} (f : G βg H) (hf : Function.Bijective βf) (hp : p.IsHamiltonian) : (SimpleGraph.Walk.map f p).IsHamiltonian
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65