Loogle!
Result
Found 46 declarations mentioning SimpleGraph.Walk.map.
- SimpleGraph.Walk.map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} : G.Walk u v β G'.Walk (f u) (f v) - SimpleGraph.Walk.map_id π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v) : SimpleGraph.Walk.map SimpleGraph.Hom.id p = p - SimpleGraph.Walk.transfer_eq_map_ofLE π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {G : SimpleGraph V} {u v : V} (p : G.Walk u v) {H : SimpleGraph V} (hp : β e β p.edges, e β H.edgeSet) (GH : G β€ H) : p.transfer H hp = SimpleGraph.Walk.map (SimpleGraph.Hom.ofLE GH) p - SimpleGraph.Walk.length_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).length = p.length - SimpleGraph.Walk.map_nil π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u : V} : SimpleGraph.Walk.map f SimpleGraph.Walk.nil = SimpleGraph.Walk.nil - SimpleGraph.Walk.map_injective_of_injective π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} (hinj : Function.Injective βf) (u v : V) : Function.Injective (SimpleGraph.Walk.map f) - SimpleGraph.Walk.darts_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).darts = List.map f.mapDart p.darts - SimpleGraph.Walk.getVert_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) (n : β) : (SimpleGraph.Walk.map f p).getVert n = f (p.getVert n) - SimpleGraph.Walk.support_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).support = List.map (βf) p.support - SimpleGraph.Walk.map_eq_nil_iff π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u : V} {p : G.Walk u u} : SimpleGraph.Walk.map f p = SimpleGraph.Walk.nil β p = SimpleGraph.Walk.nil - SimpleGraph.Walk.edgeSet_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).edgeSet = Sym2.map βf '' p.edgeSet - SimpleGraph.Walk.edges_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).edges = List.map (Sym2.map βf) p.edges - SimpleGraph.Walk.reverse_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) : (SimpleGraph.Walk.map f p).reverse = SimpleGraph.Walk.map f p.reverse - SimpleGraph.Walk.map_toDeleteEdges_eq π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {G : SimpleGraph V} {v w : V} (s : Set (Sym2 V)) {p : G.Walk v w} (hp : β e β p.edges, e β s) : SimpleGraph.Walk.map (SimpleGraph.Hom.ofLE β―) (SimpleGraph.Walk.toDeleteEdges s p hp) = p - SimpleGraph.Walk.map_append π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v w : V} (p : G.Walk u v) (q : G.Walk v w) : SimpleGraph.Walk.map f (p.append q) = (SimpleGraph.Walk.map f p).append (SimpleGraph.Walk.map f q) - SimpleGraph.Walk.map_cons π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (p : G.Walk u v) {w : V} (h : G.Adj w u) : SimpleGraph.Walk.map f (SimpleGraph.Walk.cons h p) = SimpleGraph.Walk.cons β― (SimpleGraph.Walk.map f p) - SimpleGraph.Walk.map_map π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {V'' : Type w} {G : SimpleGraph V} {G' : SimpleGraph V'} {G'' : SimpleGraph V''} (f : G βg G') (f' : G' βg G'') {u v : V} (p : G.Walk u v) : SimpleGraph.Walk.map f' (SimpleGraph.Walk.map f p) = SimpleGraph.Walk.map (f'.comp f) p - SimpleGraph.Walk.map.hcongr_8 π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
(V V' : Type u) (e_1 : V = V') (V'β V'' : Type v) (e_2 : V'β = V'') (G : SimpleGraph V) (G' : SimpleGraph V') (e_3 : G β G') (G'β : SimpleGraph V'β) (G'' : SimpleGraph V'') (e_4 : G'β β G'') (f : G βg G'β) (f' : G' βg G'') (e_5 : f β f') (u : V) (u' : V') (e_6 : u β u') (v : V) (v' : V') (e_7 : v β v') (aβ : G.Walk u v) (a'β : G'.Walk u' v') (e_8 : aβ β a'β) : SimpleGraph.Walk.map f aβ β SimpleGraph.Walk.map f' a'β - SimpleGraph.Walk.map_induce π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {G : SimpleGraph V} {s : Set V} {u v : V} (w : G.Walk u v) (hw : β x β w.support, x β s) : SimpleGraph.Walk.map (SimpleGraph.Embedding.induce s).toHom (SimpleGraph.Walk.induce s w hw) = w - SimpleGraph.Walk.map_copy π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v u' v' : V} (p : G.Walk u v) (hu : u = u') (hv : v = v') : SimpleGraph.Walk.map f (p.copy hu hv) = (SimpleGraph.Walk.map f p).copy β― β― - SimpleGraph.Walk.map_induce_induceHomOfLE π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {G : SimpleGraph V} {s s' : Set V} (hs : s β s') {u v : V} (w : G.Walk u v) (hw : β x β w.support, x β s) : SimpleGraph.Walk.map (G.induceHomOfLE hs).toHom (SimpleGraph.Walk.induce s w hw) = SimpleGraph.Walk.induce s' w β― - SimpleGraph.Walk.map_eq_of_eq π Mathlib.Combinatorics.SimpleGraph.Walks.Maps
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} (p : G.Walk u v) {f : G βg G'} (f' : G βg G') (h : f = f') : SimpleGraph.Walk.map f p = (SimpleGraph.Walk.map f' p).copy β― β― - SimpleGraph.Walk.IsSubwalk.map π Mathlib.Combinatorics.SimpleGraph.Walks.Subwalks
{V : Type u_1} {G G' : SimpleGraph V} {u v u' v' : V} {pβ : G.Walk u v} {pβ : G.Walk u' v'} (h : pβ.IsSubwalk pβ) (f : G βg G') : (SimpleGraph.Walk.map f pβ).IsSubwalk (SimpleGraph.Walk.map f pβ) - SimpleGraph.Walk.IsCycle.map π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u : V} {p : G.Walk u u} (hinj : Function.Injective βf) : p.IsCycle β (SimpleGraph.Walk.map f p).IsCycle - SimpleGraph.Walk.IsPath.of_map π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} {p : G.Walk u v} {f : G βg G'} (hp : (SimpleGraph.Walk.map f p).IsPath) : p.IsPath - SimpleGraph.Walk.map_isCycle_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u : V} {p : G.Walk u u} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsCycle β p.IsCycle - SimpleGraph.Walk.map_isPath_of_injective π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) (hp : p.IsPath) : (SimpleGraph.Walk.map f p).IsPath - SimpleGraph.Walk.map_isTrail_of_injective π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : p.IsTrail β (SimpleGraph.Walk.map f p).IsTrail - SimpleGraph.Walk.map_isPath_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsPath β p.IsPath - SimpleGraph.Walk.map_isTrail_iff_of_injective π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {f : G βg G'} {u v : V} {p : G.Walk u v} (hinj : Function.Injective βf) : (SimpleGraph.Walk.map f p).IsTrail β p.IsTrail - SimpleGraph.Path.mapEmbedding_coe π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βͺg G') {u v : V} (p : G.Path u v) : β(SimpleGraph.Path.mapEmbedding f p) = SimpleGraph.Walk.map f.toHom βp - SimpleGraph.Path.map_coe π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') (hinj : Function.Injective βf) {u v : V} (p : G.Path u v) : β(SimpleGraph.Path.map f hinj p) = SimpleGraph.Walk.map f βp - SimpleGraph.Path.map.eq_1 π Mathlib.Combinatorics.SimpleGraph.Paths
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') (hinj : Function.Injective βf) {u v : V} (p : G.Path u v) : SimpleGraph.Path.map f hinj p = β¨SimpleGraph.Walk.map f βp, β―β© - SimpleGraph.Walk.toSubgraph_map π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} {u v : V} (f : G βg G') (p : G.Walk u v) : (SimpleGraph.Walk.map f p).toSubgraph = SimpleGraph.Subgraph.map f p.toSubgraph - SimpleGraph.Walk.map.eq_1 π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u : V} : SimpleGraph.Walk.map f SimpleGraph.Walk.nil = SimpleGraph.Walk.nil - SimpleGraph.Walk.map.eq_2 π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (v_3 : V) (h : G.Adj u v_3) (p : G.Walk v_3 v) : SimpleGraph.Walk.map f (SimpleGraph.Walk.cons h p) = SimpleGraph.Walk.cons β― (SimpleGraph.Walk.map f p) - SimpleGraph.Walk.map.eq_def π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {V' : Type v} {G : SimpleGraph V} {G' : SimpleGraph V'} (f : G βg G') {u v : V} (xβ : G.Walk u v) : SimpleGraph.Walk.map f xβ = match v, xβ with | .(u), SimpleGraph.Walk.nil => SimpleGraph.Walk.nil | v, SimpleGraph.Walk.cons h p => SimpleGraph.Walk.cons β― (SimpleGraph.Walk.map f p) - SimpleGraph.Walk.map_mapToSubgraph_hom π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {G : SimpleGraph V} {u v : V} (w : G.Walk u v) : SimpleGraph.Walk.map w.toSubgraph.hom w.mapToSubgraph = w - SimpleGraph.Walk.mapToSubgraph.eq_2 π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {G : SimpleGraph V} {u v : V} (v_3 : V) (h : G.Adj u v_3) (p : G.Walk v_3 v) : (SimpleGraph.Walk.cons h p).mapToSubgraph = SimpleGraph.Walk.cons β― (SimpleGraph.Walk.map (SimpleGraph.Subgraph.inclusion β―) p.mapToSubgraph) - SimpleGraph.Walk.mapToSubgraph.eq_def π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {G : SimpleGraph V} {u v : V} (xβ : G.Walk u v) : xβ.mapToSubgraph = match v, xβ with | .(u), SimpleGraph.Walk.nil => SimpleGraph.Walk.nil | v, SimpleGraph.Walk.cons h p => have h_1 := β―; have h_2 := h_1; SimpleGraph.Walk.cons h_2 (SimpleGraph.Walk.map (SimpleGraph.Subgraph.inclusion β―) p.mapToSubgraph) - SimpleGraph.Walk.map_mapToSubgraph_eq_induce π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {G : SimpleGraph V} (s : Set V) {u v : V} (w : G.Walk u v) (hs : β x β w.support, x β s) : SimpleGraph.Walk.map { toFun := fun x => β¨βx, β―β©, map_rel' := β― } w.mapToSubgraph = SimpleGraph.Walk.induce s w hs - SimpleGraph.Walk.map_mapToSubgraph_eq_induce_id π Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph
{V : Type u} {G : SimpleGraph V} {u v : V} (w : G.Walk u v) : SimpleGraph.Walk.map { toFun := fun v_1 => β¨βv_1, β―β©, map_rel' := β― } w.mapToSubgraph = SimpleGraph.Walk.induce (fun x => List.Mem x w.support) w β― - SimpleGraph.Walk.boxProdLeft.eq_1 π Mathlib.Combinatorics.SimpleGraph.Prod
{Ξ± : Type u_1} {Ξ² : Type u_2} {G : SimpleGraph Ξ±} (H : SimpleGraph Ξ²) {aβ aβ : Ξ±} (b : Ξ²) : SimpleGraph.Walk.boxProdLeft H b = SimpleGraph.Walk.map (G.boxProdLeft H b).toHom - SimpleGraph.Walk.boxProdRight.eq_1 π Mathlib.Combinatorics.SimpleGraph.Prod
{Ξ± : Type u_1} {Ξ² : Type u_2} (G : SimpleGraph Ξ±) {H : SimpleGraph Ξ²} {bβ bβ : Ξ²} (a : Ξ±) : SimpleGraph.Walk.boxProdRight G a = SimpleGraph.Walk.map (G.boxProdRight H a).toHom - SimpleGraph.Walk.IsHamiltonianCycle.map π Mathlib.Combinatorics.SimpleGraph.Hamiltonian
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ±] [DecidableEq Ξ²] {G : SimpleGraph Ξ±} {a : Ξ±} {p : G.Walk a a} {H : SimpleGraph Ξ²} (f : G βg H) (hf : Function.Bijective βf) (hp : p.IsHamiltonianCycle) : (SimpleGraph.Walk.map f p).IsHamiltonianCycle - SimpleGraph.Walk.IsHamiltonian.map π Mathlib.Combinatorics.SimpleGraph.Hamiltonian
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ±] [DecidableEq Ξ²] {G : SimpleGraph Ξ±} {a b : Ξ±} {p : G.Walk a b} {H : SimpleGraph Ξ²} (f : G βg H) (hf : Function.Bijective βf) (hp : p.IsHamiltonian) : (SimpleGraph.Walk.map f p).IsHamiltonian
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c