Loogle!
Result
Found 43 declarations mentioning SlashAction.map.
- SlashAction.map 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} (γ : Type u_4) {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] : β → G → α → α - SlashAction.slash_one 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] (k : β) (a : α) : SlashAction.map γ k 1 a = a - SlashAction.zero_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] (k : β) (g : G) : SlashAction.map γ k g 0 = 0 - SlashAction.smul_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] (k : β) (g : G) (a : α) (z : γ) : SlashAction.map γ k g (z • a) = z • SlashAction.map γ k g a - SlashAction.slash_mul 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] (k : β) (g h : G) (a : α) : SlashAction.map γ k (g * h) a = SlashAction.map γ k h (SlashAction.map γ k g a) - SlashAction.neg_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddGroup α] [SMul γ α] [SlashAction β G α γ] (k : β) (g : G) (a : α) : SlashAction.map γ k g (-a) = -SlashAction.map γ k g a - SlashAction.add_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} {inst✝ : Group G} {inst✝¹ : AddMonoid α} {inst✝² : SMul γ α} [self : SlashAction β G α γ] (k : β) (g : G) (a b : α) : SlashAction.map γ k g (a + b) = SlashAction.map γ k g a + SlashAction.map γ k g b - SlashAction.smul_slash_of_tower 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{R : Type u_1} {β : Type u_2} {G : Type u_3} {α : Type u_4} (γ : Type u_5) [Group G] [AddMonoid α] [Monoid γ] [MulAction γ α] [SMul R γ] [SMul R α] [IsScalarTower R γ α] [SlashAction β G α γ] (k : β) (g : G) (a : α) (r : R) : SlashAction.map γ k g (r • a) = r • SlashAction.map γ k g a - ModularForm.is_invariant_const 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(A : Matrix.SpecialLinearGroup (Fin 2) ℤ) (x : ℂ) : SlashAction.map ℂ 0 A (Function.const UpperHalfPlane x) = Function.const UpperHalfPlane x - ModularForm.is_invariant_one 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : SlashAction.map ℂ 0 A 1 = 1 - ModularForm.mul_slash_SL2 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(k1 k2 : ℤ) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) (f g : UpperHalfPlane → ℂ) : SlashAction.map ℂ (k1 + k2) A (f * g) = SlashAction.map ℂ k1 A f * SlashAction.map ℂ k2 A g - ModularForm.slash_action_eq'_iff 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(k : ℤ) (f : UpperHalfPlane → ℂ) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) (z : UpperHalfPlane) : SlashAction.map ℂ k γ f z = f z ↔ f (γ • z) = (↑(↑γ 1 0) * ↑z + ↑(↑γ 1 1)) ^ k * f z - ModularForm.is_invariant_one' 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : SlashAction.map ℂ 0 (↑A) 1 = 1 - ModularForm.SL_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{k : ℤ} (f : UpperHalfPlane → ℂ) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : SlashAction.map ℂ k γ f = SlashAction.map ℂ k (↑γ) f - ModularForm.slash_def 📋 Mathlib.NumberTheory.ModularForms.SlashActions
{k : ℤ} (f : UpperHalfPlane → ℂ) (A : ↥(Matrix.GLPos (Fin 2) ℝ)) : SlashAction.map ℂ k A f = ModularForm.slash k A f - ModularForm.mul_slash 📋 Mathlib.NumberTheory.ModularForms.SlashActions
(k1 k2 : ℤ) (A : ↥(Matrix.GLPos (Fin 2) ℝ)) (f g : UpperHalfPlane → ℂ) : SlashAction.map ℂ (k1 + k2) A (f * g) = (↑↑A).det • SlashAction.map ℂ k1 A f * SlashAction.map ℂ k2 A g - SlashInvariantForm.mk 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} (toFun : UpperHalfPlane → ℂ) (slash_action_eq' : ∀ γ ∈ Γ, SlashAction.map ℂ k γ toFun = toFun) : SlashInvariantForm Γ k - SlashInvariantForm.slash_action_eq' 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} (self : SlashInvariantForm Γ k) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : γ ∈ Γ → SlashAction.map ℂ k γ self.toFun = self.toFun - SlashInvariantForm.slash_action_eqn 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_1} {Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} [FunLike F UpperHalfPlane ℂ] [SlashInvariantFormClass F Γ k] (f : F) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) (hγ : γ ∈ Γ) : SlashAction.map ℂ k γ ⇑f = ⇑f - SlashInvariantForm.coe_mk 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} (f : UpperHalfPlane → ℂ) (hf : ∀ γ ∈ Γ, SlashAction.map ℂ k γ f = f) : ⇑{ toFun := f, slash_action_eq' := hf } = f - SlashInvariantForm.mk.sizeOf_spec 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} (toFun : UpperHalfPlane → ℂ) (slash_action_eq' : ∀ γ ∈ Γ, SlashAction.map ℂ k γ toFun = toFun) : sizeOf { toFun := toFun, slash_action_eq' := slash_action_eq' } = 1 - SlashInvariantFormClass.mk 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_1} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} [FunLike F UpperHalfPlane ℂ] (slash_action_eq : ∀ (f : F), ∀ γ ∈ Γ, SlashAction.map ℂ k γ ⇑f = ⇑f) : SlashInvariantFormClass F Γ k - SlashInvariantFormClass.slash_action_eq 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_1} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} {inst✝ : FunLike F UpperHalfPlane ℂ} [self : SlashInvariantFormClass F Γ k] (f : F) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : γ ∈ Γ → SlashAction.map ℂ k γ ⇑f = ⇑f - SlashInvariantForm.mk.injEq 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} (toFun : UpperHalfPlane → ℂ) (slash_action_eq' : ∀ γ ∈ Γ, SlashAction.map ℂ k γ toFun = toFun) (toFun✝ : UpperHalfPlane → ℂ) (slash_action_eq'✝ : ∀ γ ∈ Γ, SlashAction.map ℂ k γ toFun✝ = toFun✝) : ({ toFun := toFun, slash_action_eq' := slash_action_eq' } = { toFun := toFun✝, slash_action_eq' := slash_action_eq'✝ }) = (toFun = toFun✝) - SlashInvariantForm.coe_translateGLPos 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_1} {Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} [FunLike F UpperHalfPlane ℂ] [SlashInvariantFormClass F Γ k] (f : F) (g : ↥(Matrix.GLPos (Fin 2) ℝ)) : ⇑(SlashInvariantForm.translateGLPos f g) = SlashAction.map ℂ k g ⇑f - SlashInvariantForm.coe_translate 📋 Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_1} {Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} [FunLike F UpperHalfPlane ℂ] [SlashInvariantFormClass F Γ k] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) ℤ) : ⇑(SlashInvariantForm.translate f g) = SlashAction.map ℂ k g ⇑f - ModularForm.bdd_at_infty' 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (self : ModularForm Γ k) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑self.toSlashInvariantForm) - ModularFormClass.bdd_at_infty 📋 Mathlib.NumberTheory.ModularForms.Basic
{F : Type u_2} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} {inst✝ : FunLike F UpperHalfPlane ℂ} [self : ModularFormClass F Γ k] (f : F) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑f) - CuspForm.zero_at_infty' 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (self : CuspForm Γ k) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑self.toSlashInvariantForm) - CuspFormClass.zero_at_infty 📋 Mathlib.NumberTheory.ModularForms.Basic
{F : Type u_2} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} {inst✝ : FunLike F UpperHalfPlane ℂ} [self : CuspFormClass F Γ k] (f : F) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑f) - ModularForm.mk 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (bdd_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) : ModularForm Γ k - ModularFormClass.mk 📋 Mathlib.NumberTheory.ModularForms.Basic
{F : Type u_2} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} [FunLike F UpperHalfPlane ℂ] [toSlashInvariantFormClass : SlashInvariantFormClass F Γ k] (holo : ∀ (f : F), MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑f) (bdd_at_infty : ∀ (f : F) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑f)) : ModularFormClass F Γ k - CuspForm.mk 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (zero_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) : CuspForm Γ k - CuspFormClass.mk 📋 Mathlib.NumberTheory.ModularForms.Basic
{F : Type u_2} {Γ : outParam (Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ))} {k : outParam ℤ} [FunLike F UpperHalfPlane ℂ] [toSlashInvariantFormClass : SlashInvariantFormClass F Γ k] (holo : ∀ (f : F), MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑f) (zero_at_infty : ∀ (f : F) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑f)) : CuspFormClass F Γ k - ModularForm.mk.sizeOf_spec 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (bdd_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) : sizeOf { toSlashInvariantForm := toSlashInvariantForm, holo' := holo', bdd_at_infty' := bdd_at_infty' } = 1 + sizeOf toSlashInvariantForm - CuspForm.mk.sizeOf_spec 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (zero_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) : sizeOf { toSlashInvariantForm := toSlashInvariantForm, holo' := holo', zero_at_infty' := zero_at_infty' } = 1 + sizeOf toSlashInvariantForm - ModularForm.mk.injEq 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (bdd_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) (toSlashInvariantForm✝ : SlashInvariantForm Γ k) (holo'✝ : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm✝) (bdd_at_infty'✝ : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm✝)) : ({ toSlashInvariantForm := toSlashInvariantForm, holo' := holo', bdd_at_infty' := bdd_at_infty' } = { toSlashInvariantForm := toSlashInvariantForm✝, holo' := holo'✝, bdd_at_infty' := bdd_at_infty'✝ }) = (toSlashInvariantForm = toSlashInvariantForm✝) - CuspForm.mk.injEq 📋 Mathlib.NumberTheory.ModularForms.Basic
{Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {k : ℤ} (toSlashInvariantForm : SlashInvariantForm Γ k) (holo' : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm) (zero_at_infty' : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm)) (toSlashInvariantForm✝ : SlashInvariantForm Γ k) (holo'✝ : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) ⇑toSlashInvariantForm✝) (zero_at_infty'✝ : ∀ (A : Matrix.SpecialLinearGroup (Fin 2) ℤ), UpperHalfPlane.IsZeroAtImInfty (SlashAction.map ℂ k A ⇑toSlashInvariantForm✝)) : ({ toSlashInvariantForm := toSlashInvariantForm, holo' := holo', zero_at_infty' := zero_at_infty' } = { toSlashInvariantForm := toSlashInvariantForm✝, holo' := holo'✝, zero_at_infty' := zero_at_infty'✝ }) = (toSlashInvariantForm = toSlashInvariantForm✝) - MDifferentiable.slash 📋 Mathlib.NumberTheory.ModularForms.Basic
{f : UpperHalfPlane → ℂ} (hf : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) f) (k : ℤ) (g : ↥(Matrix.GLPos (Fin 2) ℝ)) : MDifferentiable (modelWithCornersSelf ℂ ℂ) (modelWithCornersSelf ℂ ℂ) (SlashAction.map ℂ k g f) - CuspForm.coe_translate 📋 Mathlib.NumberTheory.ModularForms.Basic
{k : ℤ} {Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {F : Type u_1} [FunLike F UpperHalfPlane ℂ] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) ℤ) [CuspFormClass F Γ k] : ⇑(CuspForm.translate f g) = SlashAction.map ℂ k g ⇑f - ModularForm.coe_translate 📋 Mathlib.NumberTheory.ModularForms.Basic
{k : ℤ} {Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) ℤ)} {F : Type u_1} [FunLike F UpperHalfPlane ℂ] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) ℤ) [ModularFormClass F Γ k] : ⇑(ModularForm.translate f g) = SlashAction.map ℂ k g ⇑f - EisensteinSeries.eisensteinSeries_slash_apply 📋 Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : ℕ} (a : Fin 2 → ZMod N) (k : ℤ) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : SlashAction.map ℂ k γ (eisensteinSeries a k) = eisensteinSeries (Matrix.vecMul a ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ)) k - EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF 📋 Mathlib.NumberTheory.ModularForms.EisensteinSeries.IsBoundedAtImInfty
{N : ℕ+} (a : Fin 2 → ZMod ↑N) {k : ℤ} (hk : 3 ≤ k) (A : Matrix.SpecialLinearGroup (Fin 2) ℤ) : UpperHalfPlane.IsBoundedAtImInfty (SlashAction.map ℂ k A (EisensteinSeries.eisensteinSeries_SIF a k).toFun)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65