Loogle!
Result
Found 22 declarations mentioning StarSubalgebra.map.
- StarSubalgebra.map_id π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] (S : StarSubalgebra R A) : StarSubalgebra.map (StarAlgHom.id R A) S = S - StarSubalgebra.map π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A βββ[R] B) (S : StarSubalgebra R A) : StarSubalgebra R B - StarAlgHom.range_eq_map_top π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [StarModule R B] (Ο : A βββ[R] B) : Ο.range = StarSubalgebra.map Ο β€ - StarSubalgebra.gc_map_comap π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (f : A βββ[R] B) : GaloisConnection (StarSubalgebra.map f) (StarSubalgebra.comap f) - StarSubalgebra.map_toSubalgebra π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A βββ[R] B} : (StarSubalgebra.map f S).toSubalgebra = Subalgebra.map f.toAlgHom S.toSubalgebra - StarSubalgebra.map_injective π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {f : A βββ[R] B} (hf : Function.Injective βf) : Function.Injective (StarSubalgebra.map f) - StarSubalgebra.map_mono π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {Sβ Sβ : StarSubalgebra R A} {f : A βββ[R] B} : Sβ β€ Sβ β StarSubalgebra.map f Sβ β€ StarSubalgebra.map f Sβ - StarSubalgebra.map_le_iff_le_comap π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A βββ[R] B} {U : StarSubalgebra R B} : StarSubalgebra.map f S β€ U β S β€ StarSubalgebra.comap f U - StarAlgHom.map_adjoin π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R A] [StarModule R B] (f : A βββ[R] B) (s : Set A) : StarSubalgebra.map f (StarAlgebra.adjoin R s) = StarAlgebra.adjoin R (βf '' s) - StarSubalgebra.coe_map π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] (S : StarSubalgebra R A) (f : A βββ[R] B) : β(StarSubalgebra.map f S) = βf '' βS - StarSubalgebra.map_sup π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A βββ[R] B) (S T : StarSubalgebra R A) : StarSubalgebra.map f (S β T) = StarSubalgebra.map f S β StarSubalgebra.map f T - StarSubalgebra.mem_map π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] {S : StarSubalgebra R A} {f : A βββ[R] B} {y : B} : y β StarSubalgebra.map f S β β x β S, f x = y - StarSubalgebra.map_iInf π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] {ΞΉ : Sort u_5} [Nonempty ΞΉ] (f : A βββ[R] B) (hf : Function.Injective βf) (s : ΞΉ β StarSubalgebra R A) : StarSubalgebra.map f (iInf s) = β¨ i, StarSubalgebra.map f (s i) - StarSubalgebra.map_map π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] [Semiring B] [StarRing B] [Algebra R B] [StarModule R B] [Semiring C] [StarRing C] [Algebra R C] [StarModule R C] (S : StarSubalgebra R A) (g : B βββ[R] C) (f : A βββ[R] B) : StarSubalgebra.map g (StarSubalgebra.map f S) = StarSubalgebra.map (g.comp f) S - StarSubalgebra.map_inf π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [StarRing R] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] (f : A βββ[R] B) (hf : Function.Injective βf) (S T : StarSubalgebra R A) : StarSubalgebra.map f (S β T) = StarSubalgebra.map f S β StarSubalgebra.map f T - StarSubalgebra.topologicalClosure_map π Mathlib.Topology.Algebra.StarSubalgebra
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [IsTopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [IsTopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (Ο : A βββ[R] B) (hΟ : Topology.IsClosedEmbedding βΟ) : (StarSubalgebra.map Ο s).topologicalClosure = StarSubalgebra.map Ο s.topologicalClosure - StarSubalgebra.map_topologicalClosure_le π Mathlib.Topology.Algebra.StarSubalgebra
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [IsTopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [IsTopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (Ο : A βββ[R] B) (hΟ : Continuous βΟ) : StarSubalgebra.map Ο s.topologicalClosure β€ (StarSubalgebra.map Ο s).topologicalClosure - StarSubalgebra.topologicalClosure_map_le π Mathlib.Topology.Algebra.StarSubalgebra
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [StarRing R] [TopologicalSpace A] [Semiring A] [Algebra R A] [StarRing A] [StarModule R A] [IsTopologicalSemiring A] [ContinuousStar A] [TopologicalSpace B] [Semiring B] [Algebra R B] [StarRing B] [StarModule R B] [IsTopologicalSemiring B] [ContinuousStar B] (s : StarSubalgebra R A) (Ο : A βββ[R] B) (hΟ : IsClosedMap βΟ) : (StarSubalgebra.map Ο s).topologicalClosure β€ StarSubalgebra.map Ο s.topologicalClosure - BoundedContinuousFunction.separatesPoints_charPoly π Mathlib.Analysis.Fourier.BoundedContinuousFunctionChar
{V : Type u_1} {W : Type u_2} [AddCommGroup V] [Module β V] [TopologicalSpace V] [AddCommGroup W] [Module β W] [TopologicalSpace W] {e : AddChar β Circle} {L : V ββ[β] W ββ[β] β} (he : Continuous βe) (he' : e β 1) (hL : Continuous fun p => (L p.1) p.2) (hL' : β (v : V), v β 0 β L v β 0) : (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarβ β) (BoundedContinuousFunction.charPoly he hL)).SeparatesPoints - RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict π Mathlib.Analysis.RCLike.BoundedContinuous
(π : Type u_1) (E : Type u_2) [RCLike π] [PseudoEMetricSpace E] {A : StarSubalgebra π (BoundedContinuousFunction E π)} : Subalgebra.map (BoundedContinuousFunction.toContinuousMapβ β) (Subalgebra.comap (BoundedContinuousFunction.AlgHom.compLeftContinuousBounded β RCLike.ofRealAm β―) (Subalgebra.restrictScalars β A.toSubalgebra)) = Subalgebra.comap (AlgHom.compLeftContinuous β RCLike.ofRealAm β―) (Subalgebra.restrictScalars β (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarβ π) A).toSubalgebra) - MeasureTheory.ext_of_forall_mem_subalgebra_integral_eq_of_polish π Mathlib.MeasureTheory.Measure.FiniteMeasureExt
{E : Type u_1} {π : Type u_2} [RCLike π] [MeasurableSpace E] [TopologicalSpace E] [PolishSpace E] [BorelSpace E] {P P' : MeasureTheory.Measure E} [MeasureTheory.IsFiniteMeasure P] [MeasureTheory.IsFiniteMeasure P'] {A : StarSubalgebra π (BoundedContinuousFunction E π)} (hA : (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarβ π) A).SeparatesPoints) (heq : β g β A, β« (x : E), g x βP = β« (x : E), g x βP') : P = P' - MeasureTheory.ext_of_forall_mem_subalgebra_integral_eq_of_pseudoEMetric_complete_countable π Mathlib.MeasureTheory.Measure.FiniteMeasureExt
{E : Type u_1} {π : Type u_2} [RCLike π] [MeasurableSpace E] [PseudoEMetricSpace E] [BorelSpace E] [CompleteSpace E] [SecondCountableTopology E] {P P' : MeasureTheory.Measure E} [MeasureTheory.IsFiniteMeasure P] [MeasureTheory.IsFiniteMeasure P'] {A : StarSubalgebra π (BoundedContinuousFunction E π)} (hA : (StarSubalgebra.map (BoundedContinuousFunction.toContinuousMapStarβ π) A).SeparatesPoints) (heq : β g β A, β« (x : E), g x βP = β« (x : E), g x βP') : P = P'
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65