Loogle!
Result
Found 37 declarations mentioning Std.DTreeMap.Internal.Impl.getD.
- Std.DTreeMap.Internal.Impl.getD 📋 Std.Data.DTreeMap.Internal.Queries
{α : Type u} {β : α → Type v} [Ord α] [Std.LawfulEqOrd α] (t : Std.DTreeMap.Internal.Impl α β) (k : α) (fallback : β k) : β k - Std.DTreeMap.Internal.Impl.getD.eq_1 📋 Std.Data.DTreeMap.Internal.Model
{α : Type u} {β : α → Type v} [Ord α] [Std.LawfulEqOrd α] (k : α) (fallback : β k) : Std.DTreeMap.Internal.Impl.leaf.getD k fallback = fallback - Std.DTreeMap.Internal.Impl.getD_eq_getDₘ 📋 Std.Data.DTreeMap.Internal.Model
{α : Type u} {β : α → Type v} [Ord α] [Std.OrientedOrd α] [Std.LawfulEqOrd α] (k : α) (l : Std.DTreeMap.Internal.Impl α β) (fallback : β k) : l.getD k fallback = Std.DTreeMap.Internal.Impl.getDₘ k l fallback - Std.DTreeMap.Internal.Impl.getD.eq_2 📋 Std.Data.DTreeMap.Internal.Model
{α : Type u} {β : α → Type v} [Ord α] [Std.LawfulEqOrd α] (k : α) (fallback : β k) (size : ℕ) (k' : α) (v : β k') (l r : Std.DTreeMap.Internal.Impl α β) : (Std.DTreeMap.Internal.Impl.inner size k' v l r).getD k fallback = match h : compare k k' with | Ordering.lt => l.getD k fallback | Ordering.gt => r.getD k fallback | Ordering.eq => cast ⋯ v - Std.DTreeMap.Internal.Impl.getD_eq_getValueCastD 📋 Std.Data.DTreeMap.Internal.WF.Lemmas
{α : Type u} {β : α → Type v} [Ord α] [instBEq : BEq α] [Std.LawfulBEqOrd α] [Std.TransOrd α] [Std.LawfulEqOrd α] {k : α} {t : Std.DTreeMap.Internal.Impl α β} {fallback : β k} (hto : t.Ordered) : t.getD k fallback = Std.Internal.List.getValueCastD k t.toListModel fallback - Std.DTreeMap.Internal.Impl.getD_empty 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} [Std.TransOrd α] [Std.LawfulEqOrd α] {a : α} {fallback : β a} : Std.DTreeMap.Internal.Impl.empty.getD a fallback = fallback - Std.DTreeMap.Internal.Impl.getD_erase!_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k : α} {fallback : β k} : (Std.DTreeMap.Internal.Impl.erase! k t).getD k fallback = fallback - Std.DTreeMap.Internal.Impl.Const.getD_eq_getD 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {instOrd : Ord α} {β : Type v} {t : Std.DTreeMap.Internal.Impl α fun x => β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β} : Std.DTreeMap.Internal.Impl.Const.getD t a fallback = t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_of_isEmpty 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : t.isEmpty = true → t.getD a fallback = fallback - Std.DTreeMap.Internal.Impl.getD_insert!_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback b : β a} : (Std.DTreeMap.Internal.Impl.insert! a b t).getD a fallback = b - Std.DTreeMap.Internal.Impl.getD_eq_fallback_of_contains_eq_false 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : Std.DTreeMap.Internal.Impl.contains a t = false → t.getD a fallback = fallback - Std.DTreeMap.Internal.Impl.getD_eq_getD_get? 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : t.getD a fallback = (t.get? a).getD fallback - Std.DTreeMap.Internal.Impl.get!_eq_getD_default 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} [Inhabited (β a)] : t.get! a = t.getD a default - Std.DTreeMap.Internal.Impl.getD_eq_fallback 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : a ∉ t → t.getD a fallback = fallback - Std.DTreeMap.Internal.Impl.get_eq_getD 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} {h✝ : a ∈ t} : t.get a h✝ = t.getD a fallback - Std.DTreeMap.Internal.Impl.get?_eq_some_getD_of_contains 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : Std.DTreeMap.Internal.Impl.contains a t = true → t.get? a = some (t.getD a fallback) - Std.DTreeMap.Internal.Impl.get?_eq_some_getD 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback : β a} : a ∈ t → t.get? a = some (t.getD a fallback) - Std.DTreeMap.Internal.Impl.getD_alter!_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k : α} {fallback : β k} {f : Option (β k) → Option (β k)} : (Std.DTreeMap.Internal.Impl.alter! k f t).getD k fallback = (f (t.get? k)).getD fallback - Std.DTreeMap.Internal.Impl.getD_modify_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k : α} {fallback : β k} {f : β k → β k} : (Std.DTreeMap.Internal.Impl.modify k f t).getD k fallback = (Option.map f (t.get? k)).getD fallback - Std.DTreeMap.Internal.Impl.getD_erase! 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} : (Std.DTreeMap.Internal.Impl.erase! k t).getD a fallback = if compare k a = Ordering.eq then fallback else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_erase_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k : α} {fallback : β k} : (Std.DTreeMap.Internal.Impl.erase k t ⋯).impl.getD k fallback = fallback - Std.DTreeMap.Internal.Impl.getD_insert_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {a : α} {fallback b : β a} : (Std.DTreeMap.Internal.Impl.insert a b t ⋯).impl.getD a fallback = b - Std.DTreeMap.Internal.Impl.getD_erase 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} : (Std.DTreeMap.Internal.Impl.erase k t ⋯).impl.getD a fallback = if compare k a = Ordering.eq then fallback else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_alter_self 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k : α} {fallback : β k} {f : Option (β k) → Option (β k)} : (Std.DTreeMap.Internal.Impl.alter k f t ⋯).impl.getD k fallback = (f (t.get? k)).getD fallback - Std.DTreeMap.Internal.Impl.getD_insert! 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} {v : β k} : (Std.DTreeMap.Internal.Impl.insert! k v t).getD a fallback = if h : compare k a = Ordering.eq then cast ⋯ v else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_alter! 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k k' : α} {fallback : β k'} {f : Option (β k) → Option (β k)} : (Std.DTreeMap.Internal.Impl.alter! k f t).getD k' fallback = if heq : compare k k' = Ordering.eq then (Option.map (cast ⋯) (f (t.get? k))).getD fallback else t.getD k' fallback - Std.DTreeMap.Internal.Impl.getD_modify 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k k' : α} {fallback : β k'} {f : β k → β k} : (Std.DTreeMap.Internal.Impl.modify k f t).getD k' fallback = if heq : compare k k' = Ordering.eq then (Option.map (cast ⋯) (Option.map f (t.get? k))).getD fallback else t.getD k' fallback - Std.DTreeMap.Internal.Impl.getD_insert 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} {v : β k} : (Std.DTreeMap.Internal.Impl.insert k v t ⋯).impl.getD a fallback = if h : compare k a = Ordering.eq then cast ⋯ v else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_insertMany!_list_of_contains_eq_false 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [BEq α] [Std.LawfulBEqOrd α] [Std.LawfulEqOrd α] (h : t.WF) {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) : (↑(t.insertMany! l)).getD k fallback = t.getD k fallback - Std.DTreeMap.Internal.Impl.getD_alter 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k k' : α} {fallback : β k'} {f : Option (β k) → Option (β k)} : (Std.DTreeMap.Internal.Impl.alter k f t ⋯).impl.getD k' fallback = if heq : compare k k' = Ordering.eq then (Option.map (cast ⋯) (f (t.get? k))).getD fallback else t.getD k' fallback - Std.DTreeMap.Internal.Impl.getD_insertMany_empty_list_of_contains_eq_false 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} [Std.TransOrd α] [BEq α] [Std.LawfulBEqOrd α] [Std.LawfulEqOrd α] {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) : (↑(Std.DTreeMap.Internal.Impl.empty.insertMany l ⋯)).getD k fallback = fallback - Std.DTreeMap.Internal.Impl.getD_insertMany_list_of_contains_eq_false 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [BEq α] [Std.LawfulBEqOrd α] [Std.LawfulEqOrd α] (h : t.WF) {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) : (↑(t.insertMany l ⋯)).getD k fallback = t.getD k fallback - Std.DTreeMap.Internal.Impl.getD_insertIfNew! 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} {v : β k} : (Std.DTreeMap.Internal.Impl.insertIfNew! k v t).getD a fallback = if h : compare k a = Ordering.eq ∧ k ∉ t then cast ⋯ v else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_insertIfNew 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {k a : α} {fallback : β a} {v : β k} : (Std.DTreeMap.Internal.Impl.insertIfNew k v t ⋯).impl.getD a fallback = if h : compare k a = Ordering.eq ∧ k ∉ t then cast ⋯ v else t.getD a fallback - Std.DTreeMap.Internal.Impl.getD_insertMany!_list_of_mem 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : compare k k' = Ordering.eq) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun a b => ¬compare a.fst b.fst = Ordering.eq) l) (mem : ⟨k, v⟩ ∈ l) : (↑(t.insertMany! l)).getD k' fallback = cast ⋯ v - Std.DTreeMap.Internal.Impl.getD_insertMany_list_of_mem 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] [Std.LawfulEqOrd α] (h : t.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : compare k k' = Ordering.eq) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun a b => ¬compare a.fst b.fst = Ordering.eq) l) (mem : ⟨k, v⟩ ∈ l) : (↑(t.insertMany l ⋯)).getD k' fallback = cast ⋯ v - Std.DTreeMap.Internal.Impl.getD_insertMany_empty_list_of_mem 📋 Std.Data.DTreeMap.Internal.Lemmas
{α : Type u} {β : α → Type v} {instOrd : Ord α} [Std.TransOrd α] [Std.LawfulEqOrd α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : compare k k' = Ordering.eq) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun a b => ¬compare a.fst b.fst = Ordering.eq) l) (mem : ⟨k, v⟩ ∈ l) : (↑(Std.DTreeMap.Internal.Impl.empty.insertMany l ⋯)).getD k' fallback = cast ⋯ v
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65