Loogle!
Result
Found 21 declarations mentioning Std.Iter.map.
- Std.Iter.map 📋 Init.Data.Iterators.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] (f : β → γ) (it : Std.Iter β) : Std.Iter γ - Std.Iter.toArray_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iter.map f it).toArray = Array.map f it.toArray - Std.Iter.toListRev_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iter.map f it).toListRev = List.map f it.toListRev - Std.Iter.toList_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iter.map f it).toList = List.map f it.toList - Std.Iter.map_eq_toIter_map_toIterM 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {it : Std.Iter β} {f : β → γ} : Std.Iter.map f it = (Std.IterM.map f it.toIterM).toIter - Std.Iter.map.eq_1 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] (f : β → γ) (it : Std.Iter β) : Std.Iter.map f it = (Std.IterM.map f it.toIterM).toIter - Std.Iter.count_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β β' : Type w} [Std.Iterator α Id β] [Std.IteratorLoop α Id Id] [Std.Iterators.Finite α Id] [Std.LawfulIteratorLoop α Id Id] {it : Std.Iter β} {f : β → β'} : (Std.Iter.map f it).count = it.count - Std.Iter.all_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β β' : Type w} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Std.IteratorLoop α Id Id] [Std.LawfulIteratorLoop α Id Id] {it : Std.Iter β} {f : β → β'} {p : β' → Bool} : Std.Iter.all p (Std.Iter.map f it) = Std.Iter.all (fun x => p (f x)) it - Std.Iter.any_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β β' : Type w} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Std.IteratorLoop α Id Id] [Std.LawfulIteratorLoop α Id Id] {it : Std.Iter β} {f : β → β'} {p : β' → Bool} : Std.Iter.any p (Std.Iter.map f it) = Std.Iter.any (fun x => p (f x)) it - Std.Iter.fold_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ δ : Type w} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Std.IteratorLoop α Id Id] [Std.LawfulIteratorLoop α Id Id] {f : β → γ} {g : δ → γ → δ} {init : δ} {it : Std.Iter β} : Std.Iter.fold g init (Std.Iter.map f it) = Std.Iter.fold (fun d b => g d (f b)) init it - Std.Iter.allM_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β β' : Type w} {m : Type → Type w'} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Monad m] [Std.IteratorLoop α Id m] [LawfulMonad m] [Std.LawfulIteratorLoop α Id m] {it : Std.Iter β} {f : β → β'} {p : β' → m Bool} : Std.Iter.allM p (Std.Iter.map f it) = Std.Iter.allM (fun x => p (f x)) it - Std.Iter.anyM_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β β' : Type w} {m : Type → Type w'} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Monad m] [Std.IteratorLoop α Id m] [LawfulMonad m] [Std.LawfulIteratorLoop α Id m] {it : Std.Iter β} {f : β → β'} {p : β' → m Bool} : Std.Iter.anyM p (Std.Iter.map f it) = Std.Iter.anyM (fun x => p (f x)) it - Std.Iter.foldM_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ δ : Type w} {n : Type w → Type w''} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Monad n] [LawfulMonad n] [Std.IteratorLoop α Id n] [Std.LawfulIteratorLoop α Id n] {f : β → γ} {g : δ → γ → n δ} {init : δ} {it : Std.Iter β} : Std.Iter.foldM g init (Std.Iter.map f it) = Std.Iter.foldM (fun d b => g d (f b)) init it - Std.Iter.forIn_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {n : Type w → Type w''} {β₂ : Type w} [Monad n] [LawfulMonad n] [Std.Iterators.Finite α Id] [Std.IteratorLoop α Id n] [Std.LawfulIteratorLoop α Id n] {it : Std.Iter β} {f : β → β₂} {init : γ} {g : β₂ → γ → n (ForInStep γ)} : forIn (Std.Iter.map f it) init g = forIn it init fun out acc => g (f out) acc - Std.Iter.step_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterator α Id β] {it : Std.Iter β} {f : β → γ} : (Std.Iter.map f it).step = match it.step with | ⟨Std.IterStep.yield it' out, h⟩ => Std.PlausibleIterStep.yield (Std.Iter.map f it') (f out) ⋯ | ⟨Std.IterStep.skip it', h⟩ => Std.PlausibleIterStep.skip (Std.Iter.map f it') ⋯ | ⟨Std.IterStep.done, h⟩ => Std.PlausibleIterStep.done ⋯ - Std.Iter.toArray_flatMap 📋 Init.Data.Iterators.Lemmas.Combinators.FlatMap
{α α₂ β γ : Type w} [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] {f : β → Std.Iter γ} {it₁ : Std.Iter β} : (Std.Iter.flatMap f it₁).toArray = (Std.Iter.map (fun b => (f b).toArray) it₁).toArray.flatten - Std.Iter.toList_flatMap 📋 Init.Data.Iterators.Lemmas.Combinators.FlatMap
{α α₂ β γ : Type w} [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] {f : β → Std.Iter γ} {it₁ : Std.Iter β} : (Std.Iter.flatMap f it₁).toList = (Std.Iter.map (fun b => (f b).toList) it₁).toList.flatten - Std.Iter.toArray_flatMapAfter 📋 Init.Data.Iterators.Lemmas.Combinators.FlatMap
{α α₂ β γ : Type w} [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] {f : β → Std.Iter γ} {it₁ : Std.Iter β} {it₂ : Option (Std.Iter γ)} : (Std.Iter.flatMapAfter f it₁ it₂).toArray = match it₂ with | none => (Std.Iter.map (fun b => (f b).toArray) it₁).toArray.flatten | some it₂ => it₂.toArray ++ (Std.Iter.map (fun b => (f b).toArray) it₁).toArray.flatten - Std.Iter.toList_flatMapAfter 📋 Init.Data.Iterators.Lemmas.Combinators.FlatMap
{α α₂ β γ : Type w} [Std.Iterator α Id β] [Std.Iterator α₂ Id γ] [Std.Iterators.Finite α Id] [Std.Iterators.Finite α₂ Id] {f : β → Std.Iter γ} {it₁ : Std.Iter β} {it₂ : Option (Std.Iter γ)} : (Std.Iter.flatMapAfter f it₁ it₂).toList = match it₂ with | none => (Std.Iter.map (fun b => (f b).toList) it₁).toList.flatten | some it₂ => it₂.toList ++ (Std.Iter.map (fun b => (f b).toList) it₁).toList.flatten - Std.Do.Iter.foldM_map 📋 Std.Do.Triple.SpecLemmas
{ps : Std.Do.PostShape} {α β γ δ : Type w} {n : Type w → Type w''} [Std.Iterator α Id β] [Std.Iterators.Finite α Id] [Monad n] [LawfulMonad n] [Std.Do.WPMonad n ps] [Std.IteratorLoop α Id n] [Std.LawfulIteratorLoop α Id n] {f : β → γ} {g : δ → γ → n δ} {init : δ} {it : Std.Iter β} {P : Std.Do.Assertion ps} {Q : Std.Do.PostCond δ ps} (h : ⦃P⦄ Std.Iter.foldM (fun d b => g d (f b)) init it ⦃Q⦄) : ⦃P⦄ Std.Iter.foldM g init (Std.Iter.map f it) ⦃Q⦄ - Std.Do.Spec.Iter.forIn_map 📋 Std.Do.Triple.SpecLemmas
{α β β₂ γ : Type w} [Std.Iterator α Id β] {ps : Std.Do.PostShape} {n : Type w → Type u_1} [Monad n] [LawfulMonad n] [Std.Do.WPMonad n ps] [Std.Iterators.Finite α Id] [Std.IteratorLoop α Id n] [Std.LawfulIteratorLoop α Id n] {it : Std.Iter β} {f : β → β₂} {init : γ} {g : β₂ → γ → n (ForInStep γ)} {P : Std.Do.Assertion ps} {Q : Std.Do.PostCond γ ps} (h : ⦃P⦄ forIn it init fun out acc => g (f out) acc ⦃Q⦄) : ⦃P⦄ forIn (Std.Iter.map f it) init g ⦃Q⦄
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 36960b0 serving mathlib revision 9a4cf1d