Loogle!
Result
Found 8 declarations mentioning Std.Iterators.Iter.map.
- Std.Iterators.Iter.map 📋 Init.Data.Iterators.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] (f : β → γ) (it : Std.Iter β) : Std.Iter γ - Std.Iterators.Iter.map_eq_toIter_map_toIterM 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {f : β → γ} : Std.Iterators.Iter.map f it = (Std.Iterators.IterM.map f it.toIterM).toIter - Std.Iterators.Iter.toListRev_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.IteratorCollect α Id Id] [Std.Iterators.LawfulIteratorCollect α Id Id] [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iterators.Iter.map f it).toListRev = List.map f it.toListRev - Std.Iterators.Iter.toArray_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.IteratorCollect α Id Id] [Std.Iterators.LawfulIteratorCollect α Id Id] [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iterators.Iter.map f it).toArray = Array.map f it.toArray - Std.Iterators.Iter.toList_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} [Std.Iterators.IteratorCollect α Id Id] [Std.Iterators.LawfulIteratorCollect α Id Id] [Std.Iterators.Finite α Id] {f : β → γ} : (Std.Iterators.Iter.map f it).toList = List.map f it.toList - Std.Iterators.Iter.step_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {f : β → γ} : (Std.Iterators.Iter.map f it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.map f it') (f out) ⋯ | ⟨Std.Iterators.IterStep.skip it', h⟩ => Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.map f it') ⋯ | ⟨Std.Iterators.IterStep.done, h⟩ => Std.Iterators.PlausibleIterStep.done ⋯ - Std.Slice.Array.internalIter_eq 📋 Init.Data.Slice.Array.Lemmas
{α : Type u} {s : Subarray α} : Std.Slice.Internal.iter s = Std.Iterators.Iter.map (fun x => match x with | { down := i } => s.array[↑i]) ((Std.PRange.Internal.iter { lower := s.start, upper := s.stop }).attachWith (fun x => x < s.array.size) ⋯).uLift - Std.Slice.Array.toList_internalIter 📋 Init.Data.Slice.Array.Lemmas
{α : Type u} {s : Subarray α} : (Std.Slice.Internal.iter s).toList = List.map (fun i => s.array[↑i]) ({ lower := s.start, upper := s.stop }.toList.attachWith (fun x => x < s.array.size) ⋯)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65