Loogle!
Result
Found 25 declarations mentioning Std.Iterators.PostconditionT.map.
- Std.Iterators.PostconditionT.map 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Functor m] {α β : Type w} (f : α → β) (x : Std.Iterators.PostconditionT m α) : Std.Iterators.PostconditionT m β - Std.Iterators.PostconditionT.property_map 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Functor m] {α β : Type w} {x : Std.Iterators.PostconditionT m α} {f : α → β} {b : β} : (Std.Iterators.PostconditionT.map f x).Property b ↔ ∃ a, f a = b ∧ x.Property a - Std.Iterators.PostconditionT.map_eq_pure_bind 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β : Type w} {f : α → β} {x : Std.Iterators.PostconditionT m α} : Std.Iterators.PostconditionT.map f x = x.bind (pure ∘ f) - Std.Iterators.PostconditionT.map_pure 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Monad m] [LawfulMonad m] {α β : Type w} {f : α → β} {a : α} : Std.Iterators.PostconditionT.map f (pure a) = pure (f a) - Std.Iterators.PostconditionT.map.eq_1 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Functor m] {α β : Type w} (f : α → β) (x : Std.Iterators.PostconditionT m α) : Std.Iterators.PostconditionT.map f x = { Property := fun b => ∃ a, f ↑a = b, operation := (fun a => ⟨f ↑a, ⋯⟩) <$> x.operation } - Std.Iterators.PostconditionT.operation_map 📋 Init.Data.Iterators.PostconditionMonad
{m : Type w → Type w'} [Functor m] {α β : Type w} {x : Std.Iterators.PostconditionT m α} {f : α → β} : (Std.Iterators.PostconditionT.map f x).operation = (fun a => ⟨f ↑a, ⋯⟩) <$> x.operation - Std.Iterators.IterM.filterWithPostcondition 📋 Init.Data.Iterators.Combinators.Monadic.FilterMap
{α β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad n] [MonadLiftT m n] [Std.Iterators.Iterator α m β] (f : β → Std.Iterators.PostconditionT n (ULift.{w, 0} Bool)) (it : Std.IterM m β) : Std.IterM n β - Std.Iterators.IterM.filterM 📋 Init.Data.Iterators.Combinators.Monadic.FilterMap
{α β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Std.Iterators.Iterator α m β] [Monad n] [MonadLiftT m n] (f : β → n (ULift.{w, 0} Bool)) (it : Std.IterM m β) : Std.IterM n β - Std.Iterators.Iter.filterWithPostcondition 📋 Init.Data.Iterators.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {m : Type w → Type w'} [Monad m] (f : β → Std.Iterators.PostconditionT m (ULift.{w, 0} Bool)) (it : Std.Iter β) : Std.IterM m β - Std.Iterators.Iter.filterM 📋 Init.Data.Iterators.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {m : Type w → Type w'} [Monad m] (f : β → m (ULift.{w, 0} Bool)) (it : Std.Iter β) : Std.IterM m β - Std.Iterators.Map.eq_1 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
(α : Type w) {β γ : Type w} (m : Type w → Type w') (n : Type w → Type w'') (lift : ⦃α : Type w⦄ → m α → n α) [Functor n] (f : β → Std.Iterators.PostconditionT n γ) : Std.Iterators.Map α m n lift f = Std.Iterators.FilterMap α m n lift fun b => Std.Iterators.PostconditionT.map some (f b) - Std.Iterators.IterM.InternalCombinators.map.eq_1 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β γ : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad n] (lift : ⦃α : Type w⦄ → m α → n α) [Std.Iterators.Iterator α m β] (f : β → Std.Iterators.PostconditionT n γ) (it : Std.IterM m β) : Std.Iterators.IterM.InternalCombinators.map lift f it = Std.Iterators.toIterM { inner := it } n γ - Std.Iterators.instIteratorMap.eq_1 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β γ : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad n] [Std.Iterators.Iterator α m β] {lift : ⦃α : Type w⦄ → m α → n α} {f : β → Std.Iterators.PostconditionT n γ} : Std.Iterators.instIteratorMap = inferInstanceAs (Std.Iterators.Iterator (Std.Iterators.FilterMap α m n lift fun b => Std.Iterators.PostconditionT.map some (f b)) n γ) - Std.Iterators.IterM.step_mapWithPostcondition 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Std.Iterators.Iterator α m β] {it : Std.IterM m β} {γ : Type w} {f : β → Std.Iterators.PostconditionT n γ} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.IterM.mapWithPostcondition f it).step = do let __do_lift ← liftM it.step match __do_lift with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let out' ← (f out).operation pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.IterM.mapWithPostcondition f it') ↑out' ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.mapWithPostcondition f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.IterM.step_map 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β β' : Type w} {m : Type w → Type w'} [Std.Iterators.Iterator α m β] {it : Std.IterM m β} [Monad m] [LawfulMonad m] {f : β → β'} : (Std.Iterators.IterM.map f it).step = do let __do_lift ← it.step match __do_lift with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => let out' := f out; pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.IterM.map f it') out' ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.map f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.IterM.step_filterWithPostcondition 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Std.Iterators.Iterator α m β] {it : Std.IterM m β} {f : β → Std.Iterators.PostconditionT n (ULift.{w, 0} Bool)} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.IterM.filterWithPostcondition f it).step = do let __do_lift ← liftM it.step match __do_lift with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let __do_lift ← (f out).operation match __do_lift with | ⟨{ down := false }, h'⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterWithPostcondition f it') ⋯) | ⟨{ down := true }, h'⟩ => pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.IterM.filterWithPostcondition f it') out ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterWithPostcondition f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.IterM.step_filterM 📋 Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Std.Iterators.Iterator α m β] {it : Std.IterM m β} {f : β → n (ULift.{w, 0} Bool)} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.IterM.filterM f it).step = do let __do_lift ← liftM it.step match __do_lift with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let __do_lift ← f out match __do_lift with | { down := false } => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterM f it') ⋯) | { down := true } => pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.IterM.filterM f it') out ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.IterM.filterM f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.Iter.filterWithPostcondition_eq_toIter_filterMapWithPostcondition_toIterM 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {m : Type w → Type w'} [Monad m] {f : β → Std.Iterators.PostconditionT m (ULift.{w, 0} Bool)} : Std.Iterators.Iter.filterWithPostcondition f it = Std.Iterators.IterM.filterWithPostcondition f it.toIterM - Std.Iterators.Iter.filterM_eq_toIter_filterM_toIterM 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {m : Type w → Type w'} [Monad m] {f : β → m (ULift.{w, 0} Bool)} : Std.Iterators.Iter.filterM f it = Std.Iterators.IterM.filterM f it.toIterM - Std.Iterators.Iter.step_mapWithPostcondition 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {m : Type w → Type w'} {n : Type w → Type w''} {f : β → Std.Iterators.PostconditionT n γ} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.Iter.mapWithPostcondition f it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let out' ← (f out).operation pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.mapWithPostcondition f it') ↑out' ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.mapWithPostcondition f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.Iter.step_map 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β γ : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {f : β → γ} : (Std.Iterators.Iter.map f it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.map f it') (f out) ⋯ | ⟨Std.Iterators.IterStep.skip it', h⟩ => Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.map f it') ⋯ | ⟨Std.Iterators.IterStep.done, h⟩ => Std.Iterators.PlausibleIterStep.done ⋯ - Std.Iterators.Iter.step_filterWithPostcondition 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {m : Type w → Type w'} {n : Type w → Type w''} {f : β → Std.Iterators.PostconditionT n (ULift.{w, 0} Bool)} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.Iter.filterWithPostcondition f it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let __do_lift ← (f out).operation match __do_lift with | ⟨{ down := false }, h'⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.filterWithPostcondition f it') ⋯) | ⟨{ down := true }, h'⟩ => pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.filterWithPostcondition f it') out ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.filterWithPostcondition f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.Iter.step_filterM 📋 Init.Data.Iterators.Lemmas.Combinators.FilterMap
{α β : Type w} [Std.Iterators.Iterator α Id β] {it : Std.Iter β} {m : Type w → Type w'} {n : Type w → Type w''} {f : β → n (ULift.{w, 0} Bool)} [Monad n] [LawfulMonad n] [MonadLiftT m n] : (Std.Iterators.Iter.filterM f it).step = match it.step with | ⟨Std.Iterators.IterStep.yield it' out, h⟩ => do let __do_lift ← f out match __do_lift with | { down := false } => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.filterM f it') ⋯) | { down := true } => pure (Std.Iterators.PlausibleIterStep.yield (Std.Iterators.Iter.filterM f it') out ⋯) | ⟨Std.Iterators.IterStep.skip it', h⟩ => pure (Std.Iterators.PlausibleIterStep.skip (Std.Iterators.Iter.filterM f it') ⋯) | ⟨Std.Iterators.IterStep.done, h⟩ => pure (Std.Iterators.PlausibleIterStep.done ⋯) - Std.Iterators.IterM.Equiv.filterWithPostcondition 📋 Std.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α₁ α₂ β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad m] [LawfulMonad m] [Monad n] [LawfulMonad n] [Std.Iterators.Iterator α₁ m β] [Std.Iterators.Iterator α₂ m β] [MonadLiftT m n] [LawfulMonadLiftT m n] {f : β → Std.Iterators.PostconditionT n (ULift.{w, 0} Bool)} {ita : Std.IterM m β} {itb : Std.IterM m β} (h : ita.Equiv itb) : (Std.Iterators.IterM.filterWithPostcondition f ita).Equiv (Std.Iterators.IterM.filterWithPostcondition f itb) - Std.Iterators.IterM.Equiv.filterM 📋 Std.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
{α₁ α₂ β : Type w} {m : Type w → Type w'} {n : Type w → Type w''} [Monad m] [LawfulMonad m] [Monad n] [LawfulMonad n] [Std.Iterators.Iterator α₁ m β] [Std.Iterators.Iterator α₂ m β] [MonadLiftT m n] [LawfulMonadLiftT m n] {f : β → n (ULift.{w, 0} Bool)} {ita : Std.IterM m β} {itb : Std.IterM m β} (h : ita.Equiv itb) : (Std.Iterators.IterM.filterM f ita).Equiv (Std.Iterators.IterM.filterM f itb)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65