Loogle!
Result
Found 7 declarations mentioning Std.Sat.AIG.RefVec.getD.
- Std.Sat.AIG.RefVec.getD 📋 Std.Sat.AIG.RefVec
{α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {len : ℕ} (s : aig.RefVec len) (idx : ℕ) (alt : aig.Ref) : aig.Ref - Std.Sat.AIG.RefVec.get_out_bound 📋 Std.Sat.AIG.RefVec
{α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {len : ℕ} (s : aig.RefVec len) (idx : ℕ) (alt : aig.Ref) (hidx : len ≤ idx) : s.getD idx alt = alt - Std.Sat.AIG.RefVec.get_in_bound 📋 Std.Sat.AIG.RefVec
{α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {len : ℕ} (s : aig.RefVec len) (idx : ℕ) (alt : aig.Ref) (hidx : idx < len) : s.getD idx alt = s.get idx hidx - Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract.go.eq_def 📋 Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Extract
{α : Type} [Hashable α] [DecidableEq α] {newWidth : ℕ} {aig : Std.Sat.AIG α} {w : ℕ} (input : aig.RefVec w) (start : ℕ) (falseRef : aig.Ref) (curr : ℕ) (hcurr : curr ≤ newWidth) (s : aig.RefVec curr) : Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract.go input start falseRef curr hcurr s = if h : curr < newWidth then let nextRef := input.getD (start + curr) falseRef; let s := s.push nextRef; Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract.go input start falseRef (curr + 1) ⋯ s else let_fun this := ⋯; this ▸ s - Std.Sat.AIG.RefVec.getD.eq_1 📋 Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Lemmas.Operations.GetLsbD
{α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {len : ℕ} (s : aig.RefVec len) (idx : ℕ) (alt : aig.Ref) : s.getD idx alt = if hidx : idx < len then s.get idx hidx else alt - Std.Tactic.BVDecide.BVPred.denote_getD_eq_getLsbD 📋 Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Lemmas.Operations.GetLsbD
{α : Type} [Hashable α] [DecidableEq α] {w : ℕ} (aig : Std.Sat.AIG α) (assign : α → Bool) (x : BitVec w) (xv : aig.RefVec w) (falseRef : aig.Ref) (hx : ∀ (idx : ℕ) (hidx : idx < w), ⟦assign, { aig := aig, ref := xv.get idx hidx }⟧ = x.getLsbD idx) (hfalse : ⟦assign, { aig := aig, ref := falseRef }⟧ = false) (idx : ℕ) : ⟦assign, { aig := aig, ref := xv.getD idx falseRef }⟧ = x.getLsbD idx - Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract.go_get 📋 Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Lemmas.Operations.Extract
{α : Type} [Hashable α] [DecidableEq α] {w newWidth : ℕ} (aig : Std.Sat.AIG α) (input : aig.RefVec w) (lo curr : ℕ) (hcurr : curr ≤ newWidth) (falseRef : aig.Ref) (s : aig.RefVec curr) (idx : ℕ) (hidx1 : idx < newWidth) : curr ≤ idx → (Std.Tactic.BVDecide.BVExpr.bitblast.blastExtract.go input lo falseRef curr hcurr s).get idx hidx1 = input.getD (lo + idx) falseRef
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65