Loogle!
Result
Found 26 declarations mentioning Std.TreeMap.getD.
- Std.TreeMap.getD 📋 Std.Data.TreeMap.Basic
{α : Type u} {β : Type v} {cmp : α → α → Ordering} (t : Std.TreeMap α β cmp) (a : α) (fallback : β) : β - Std.TreeMap.getD_unitOfList 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {cmp : α → α → Ordering} {l : List α} {k : α} {fallback : Unit} : (Std.TreeMap.unitOfList l cmp).getD k fallback = () - Std.TreeMap.getD_emptyc 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} [Std.TransCmp cmp] {a : α} {fallback : β} : ∅.getD a fallback = fallback - Std.TreeMap.getD_erase_self 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k : α} {fallback : β} : (t.erase k).getD k fallback = fallback - Std.TreeMap.getD_insert_self 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k : α} {fallback v : β} : (t.insert k v).getD k fallback = v - Std.TreeMap.getD_of_isEmpty 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : t.isEmpty = true → t.getD a fallback = fallback - Std.TreeMap.getD_eq_fallback_of_contains_eq_false 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : t.contains a = false → t.getD a fallback = fallback - Std.TreeMap.getD_congr 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a b : α} {fallback : β} (hab : cmp a b = Ordering.eq) : t.getD a fallback = t.getD b fallback - Std.TreeMap.getD_eq_fallback 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : a ∉ t → t.getD a fallback = fallback - Std.TreeMap.getElem?_eq_some_getD_of_contains 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : t.contains a = true → t.get? a = some (t.getD a fallback) - Std.TreeMap.getD_insertManyIfNewUnit_list 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {cmp : α → α → Ordering} {t : Std.TreeMap α Unit cmp} {l : List α} {k : α} {fallback : Unit} : (t.insertManyIfNewUnit l).getD k fallback = () - Std.TreeMap.getD_erase 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k a : α} {fallback : β} : (t.erase k).getD a fallback = if cmp k a = Ordering.eq then fallback else t.getD a fallback - Std.TreeMap.getD_ofList_of_contains_eq_false 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} [Std.TransCmp cmp] [BEq α] [Std.LawfulBEqCmp cmp] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (List.map Prod.fst l).contains k = false) : (Std.TreeMap.ofList l cmp).getD k fallback = fallback - Std.TreeMap.getD_insert 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k a : α} {fallback v : β} : (t.insert k v).getD a fallback = if cmp k a = Ordering.eq then v else t.getD a fallback - Std.TreeMap.getD_eq_getD_getElem? 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : t.getD a fallback = t[a]?.getD fallback - Std.TreeMap.getElem!_eq_getD_default 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] [Inhabited β] {a : α} : t[a]! = t.getD a default - Std.TreeMap.getD_alter_self 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k : α} {fallback : β} {f : Option β → Option β} : (t.alter k f).getD k fallback = (f t[k]?).getD fallback - Std.TreeMap.getD_modify_self 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k : α} {fallback : β} {f : β → β} : (t.modify k f).getD k fallback = (Option.map f t[k]?).getD fallback - Std.TreeMap.getElem?_eq_some_getD 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} : a ∈ t → t[a]? = some (t.getD a fallback) - Std.TreeMap.getD_ofList_of_mem 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} [Std.TransCmp cmp] {l : List (α × β)} {k k' : α} (k_eq : cmp k k' = Ordering.eq) {v fallback : β} (distinct : List.Pairwise (fun a b => ¬cmp a.1 b.1 = Ordering.eq) l) (mem : (k, v) ∈ l) : (Std.TreeMap.ofList l cmp).getD k' fallback = v - Std.TreeMap.getD_alter 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k k' : α} {fallback : β} {f : Option β → Option β} : (t.alter k f).getD k' fallback = if cmp k k' = Ordering.eq then (f t[k]?).getD fallback else t.getD k' fallback - Std.TreeMap.getD_modify 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k k' : α} {fallback : β} {f : β → β} : (t.modify k f).getD k' fallback = if cmp k k' = Ordering.eq then (Option.map f t[k]?).getD fallback else t.getD k' fallback - Std.TreeMap.getElem_eq_getD 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {a : α} {fallback : β} {h : a ∈ t} : t[a] = t.getD a fallback - Std.TreeMap.getD_insertMany_list_of_contains_eq_false 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] [BEq α] [Std.LawfulBEqCmp cmp] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (List.map Prod.fst l).contains k = false) : (t.insertMany l).getD k fallback = t.getD k fallback - Std.TreeMap.getD_insertIfNew 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {k a : α} {fallback v : β} : (t.insertIfNew k v).getD a fallback = if cmp k a = Ordering.eq ∧ k ∉ t then v else t.getD a fallback - Std.TreeMap.getD_insertMany_list_of_mem 📋 Std.Data.TreeMap.Lemmas
{α : Type u} {β : Type v} {cmp : α → α → Ordering} {t : Std.TreeMap α β cmp} [Std.TransCmp cmp] {l : List (α × β)} {k k' : α} (k_eq : cmp k k' = Ordering.eq) {v fallback : β} (distinct : List.Pairwise (fun a b => ¬cmp a.1 b.1 = Ordering.eq) l) (mem : (k, v) ∈ l) : (t.insertMany l).getD k' fallback = v
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65