Loogle!
Result
Found 33 declarations mentioning Stream'.Seq.map.
- Stream'.Seq.map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) : Stream'.Seq α → Stream'.Seq β - Stream'.Seq.map_id 📋 Mathlib.Data.Seq.Seq
{α : Type u} (s : Stream'.Seq α) : Stream'.Seq.map id s = s - Stream'.Seq.map_nil 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) : Stream'.Seq.map f Stream'.Seq.nil = Stream'.Seq.nil - Stream'.Seq1.join_map_ret 📋 Mathlib.Data.Seq.Seq
{α : Type u} (s : Stream'.Seq α) : (Stream'.Seq.map Stream'.Seq1.ret s).join = s - Stream'.Seq.terminates_map_iff 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {f : α → β} {s : Stream'.Seq α} : (Stream'.Seq.map f s).Terminates ↔ s.Terminates - Stream'.Seq.terminatedAt_map_iff 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {f : α → β} {s : Stream'.Seq α} {n : ℕ} : (Stream'.Seq.map f s).TerminatedAt n ↔ s.TerminatedAt n - Stream'.Seq.map_tail 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.Seq α) : Stream'.Seq.map f s.tail = (Stream'.Seq.map f s).tail - Stream'.Seq1.join_join 📋 Mathlib.Data.Seq.Seq
{α : Type u} (SS : Stream'.Seq (Stream'.Seq1 (Stream'.Seq1 α))) : SS.join.join = (Stream'.Seq.map Stream'.Seq1.join SS).join - Stream'.Seq.map_get? 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.Seq α) (n : ℕ) : (Stream'.Seq.map f s).get? n = Option.map f (s.get? n) - Stream'.Seq.map_cons 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (a : α) (s : Stream'.Seq α) : Stream'.Seq.map f (Stream'.Seq.cons a s) = Stream'.Seq.cons (f a) (Stream'.Seq.map f s) - Stream'.Seq.mem_map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) {a : α} {s : Stream'.Seq α} : a ∈ s → f a ∈ Stream'.Seq.map f s - Stream'.Seq1.map_join' 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (S : Stream'.Seq (Stream'.Seq1 α)) : Stream'.Seq.map f S.join = (Stream'.Seq.map (Stream'.Seq1.map f) S).join - Stream'.Seq.map_append 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (s t : Stream'.Seq α) : Stream'.Seq.map f (s.append t) = (Stream'.Seq.map f s).append (Stream'.Seq.map f t) - Stream'.Seq.map_comp 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {γ : Type w} (f : α → β) (g : β → γ) (s : Stream'.Seq α) : Stream'.Seq.map (g ∘ f) s = Stream'.Seq.map g (Stream'.Seq.map f s) - Stream'.Seq1.map_pair 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {f : α → β} {a : α} {s : Stream'.Seq α} : Stream'.Seq1.map f (a, s) = (f a, Stream'.Seq.map f s) - Stream'.Seq1.map.eq_1 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} (f : α → β) (a : α) (s : Stream'.Seq α) : Stream'.Seq1.map f (a, s) = (f a, Stream'.Seq.map f s) - Stream'.Seq.exists_of_mem_map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {f : α → β} {b : β} {s : Stream'.Seq α} : b ∈ Stream'.Seq.map f s → ∃ a ∈ s, f a = b - Stream'.Seq.zipWith_map_left 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {γ : Type w} {α' : Type u'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f : α → α') (g : α' → β → γ) : Stream'.Seq.zipWith g (Stream'.Seq.map f s₁) s₂ = Stream'.Seq.zipWith (fun a b => g (f a) b) s₁ s₂ - Stream'.Seq.zipWith_map_right 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {γ : Type w} {β' : Type v'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f : β → β') (g : α → β' → γ) : Stream'.Seq.zipWith g s₁ (Stream'.Seq.map f s₂) = Stream'.Seq.zipWith (fun a b => g a (f b)) s₁ s₂ - Stream'.Seq.length_map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {s : Stream'.Seq α} {f : α → β} (h : (Stream'.Seq.map f s).Terminates) : (Stream'.Seq.map f s).length h = s.length ⋯ - Stream'.Seq.zip_map_left 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {α' : Type u'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f : α → α') : (Stream'.Seq.map f s₁).zip s₂ = Stream'.Seq.map (Prod.map f id) (s₁.zip s₂) - Stream'.Seq.zip_map_right 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {β' : Type v'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f : β → β') : s₁.zip (Stream'.Seq.map f s₂) = Stream'.Seq.map (Prod.map id f) (s₁.zip s₂) - Stream'.Seq.enum_cons 📋 Mathlib.Data.Seq.Seq
{α : Type u} (s : Stream'.Seq α) (x : α) : (Stream'.Seq.cons x s).enum = Stream'.Seq.cons (0, x) (Stream'.Seq.map (Prod.map Nat.succ id) s.enum) - Stream'.Seq.zipWith_map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {γ : Type w} {α' : Type u'} {β' : Type v'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f₁ : α → α') (f₂ : β → β') (g : α' → β' → γ) : Stream'.Seq.zipWith g (Stream'.Seq.map f₁ s₁) (Stream'.Seq.map f₂ s₂) = Stream'.Seq.zipWith (fun a b => g (f₁ a) (f₂ b)) s₁ s₂ - Stream'.Seq.zip_map 📋 Mathlib.Data.Seq.Seq
{α : Type u} {β : Type v} {α' : Type u'} {β' : Type v'} (s₁ : Stream'.Seq α) (s₂ : Stream'.Seq β) (f₁ : α → α') (f₂ : β → β') : (Stream'.Seq.map f₁ s₁).zip (Stream'.Seq.map f₂ s₂) = Stream'.Seq.map (Prod.map f₁ f₂) (s₁.zip s₂) - GenContFract.coe_toGenContFract 📋 Mathlib.Algebra.ContinuedFractions.Basic
{α : Type u_1} {β : Type u_2} [Coe α β] {g : GenContFract α} : ↑g = { h := Coe.coe g.h, s := Stream'.Seq.map GenContFract.Pair.coeFn g.s } - GenContFract.partDens.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Translations
{α : Type u_1} (g : GenContFract α) : g.partDens = Stream'.Seq.map GenContFract.Pair.b g.s - GenContFract.partNums.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Translations
{α : Type u_1} (g : GenContFract α) : g.partNums = Stream'.Seq.map GenContFract.Pair.a g.s - Stream'.Seq.map.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Computation.Translations
{α : Type u} {β : Type v} (f : α → β) (s : Stream' (Option α)) (al : s.IsSeq) : Stream'.Seq.map f ⟨s, al⟩ = ⟨Stream'.map (Option.map f) s, ⋯⟩ - GenContFract.of.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Computation.Translations
{K : Type u_1} [DivisionRing K] [LinearOrder K] [FloorRing K] (v : K) : GenContFract.of v = match GenContFract.IntFractPair.seq1 v with | (h, s) => { h := ↑h.b, s := Stream'.Seq.map (fun p => { a := 1, b := ↑p.b }) s } - GenContFract.coe_of_s_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : Stream'.Seq.map (GenContFract.Pair.map Rat.cast) (GenContFract.of q).s = (GenContFract.of v).s - GenContFract.coe_of_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : { h := ↑(GenContFract.of q).h, s := Stream'.Seq.map (GenContFract.Pair.map Rat.cast) (GenContFract.of q).s } = GenContFract.of v - Stream'.WSeq.map.eq_1 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) : Stream'.WSeq.map f = Stream'.Seq.map (Option.map f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65