Loogle!
Result
Found 20 declarations mentioning Stream'.WSeq.map.
- Stream'.WSeq.map 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) : Stream'.WSeq α → Stream'.WSeq β - Stream'.WSeq.map_id 📋 Mathlib.Data.WSeq.Basic
{α : Type u} (s : Stream'.WSeq α) : Stream'.WSeq.map id s = s - Stream'.WSeq.map_nil 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) : Stream'.WSeq.map f Stream'.WSeq.nil = Stream'.WSeq.nil - Stream'.WSeq.map_ret 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (a : α) : Stream'.WSeq.map f (Stream'.WSeq.ret a) = Stream'.WSeq.ret (f a) - Stream'.WSeq.map.eq_1 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) : Stream'.WSeq.map f = Stream'.Seq.map (Option.map f) - Stream'.WSeq.map_think 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.WSeq α) : Stream'.WSeq.map f s.think = (Stream'.WSeq.map f s).think - Stream'.WSeq.map_cons 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (a : α) (s : Stream'.WSeq α) : Stream'.WSeq.map f (Stream'.WSeq.cons a s) = Stream'.WSeq.cons (f a) (Stream'.WSeq.map f s) - Stream'.WSeq.mem_map 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) {a : α} {s : Stream'.WSeq α} : a ∈ s → f a ∈ Stream'.WSeq.map f s - Stream'.WSeq.map_join 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (S : Stream'.WSeq (Stream'.WSeq α)) : Stream'.WSeq.map f S.join = (Stream'.WSeq.map (Stream'.WSeq.map f) S).join - Stream'.WSeq.map_append 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (s t : Stream'.WSeq α) : Stream'.WSeq.map f (s.append t) = (Stream'.WSeq.map f s).append (Stream'.WSeq.map f t) - Stream'.WSeq.map_comp 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} {γ : Type w} (f : α → β) (g : β → γ) (s : Stream'.WSeq α) : Stream'.WSeq.map (g ∘ f) s = Stream'.WSeq.map g (Stream'.WSeq.map f s) - Stream'.WSeq.exists_of_mem_map 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} {f : α → β} {b : β} {s : Stream'.WSeq α} : b ∈ Stream'.WSeq.map f s → ∃ a ∈ s, f a = b - Stream'.WSeq.destruct_map 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.WSeq α) : (Stream'.WSeq.map f s).destruct = Computation.map (Option.map (Prod.map f (Stream'.WSeq.map f))) s.destruct - Stream'.WSeq.join_map_ret 📋 Mathlib.Data.WSeq.Relation
{α : Type u} (s : Stream'.WSeq α) : (Stream'.WSeq.map Stream'.WSeq.ret s).join ~ʷ s - Stream'.WSeq.bind.eq_1 📋 Mathlib.Data.WSeq.Relation
{α : Type u} {β : Type v} (s : Stream'.WSeq α) (f : α → Stream'.WSeq β) : s.bind f = (Stream'.WSeq.map f s).join - Stream'.WSeq.join_join 📋 Mathlib.Data.WSeq.Relation
{α : Type u} (SS : Stream'.WSeq (Stream'.WSeq (Stream'.WSeq α))) : SS.join.join ~ʷ (Stream'.WSeq.map Stream'.WSeq.join SS).join - Stream'.WSeq.map_congr 📋 Mathlib.Data.WSeq.Relation
{α : Type u} {β : Type v} (f : α → β) {s t : Stream'.WSeq α} (h : s ~ʷ t) : Stream'.WSeq.map f s ~ʷ Stream'.WSeq.map f t - Stream'.WSeq.bind_ret 📋 Mathlib.Data.WSeq.Relation
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.WSeq α) : s.bind (Stream'.WSeq.ret ∘ f) ~ʷ Stream'.WSeq.map f s - Stream'.WSeq.liftRel_map 📋 Mathlib.Data.WSeq.Relation
{α : Type u} {β : Type v} {γ : Type w} {δ : Type u_1} (R : α → β → Prop) (S : γ → δ → Prop) {s1 : Stream'.WSeq α} {s2 : Stream'.WSeq β} {f1 : α → γ} {f2 : β → δ} (h1 : Stream'.WSeq.LiftRel R s1 s2) (h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)) : Stream'.WSeq.LiftRel S (Stream'.WSeq.map f1 s1) (Stream'.WSeq.map f2 s2) - Computation.map_parallel 📋 Mathlib.Data.Seq.Parallel
{α : Type u} {β : Type v} (f : α → β) (S : Stream'.WSeq (Computation α)) : Computation.map f (Computation.parallel S) = Computation.parallel (Stream'.WSeq.map (Computation.map f) S)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65