Loogle!
Result
Found 25 declarations mentioning Stream'.map.
- Stream'.map 📋 Mathlib.Data.Stream.Defs
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : Stream' β - Stream'.map_id 📋 Mathlib.Data.Stream.Init
{α : Type u} (s : Stream' α) : Stream'.map id s = s - Stream'.nats_eq 📋 Mathlib.Data.Stream.Init
: Stream'.nats = Stream'.cons 0 (Stream'.map Nat.succ Stream'.nats) - Stream'.head_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : (Stream'.map f s).head = f s.head - Stream'.map_const 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (a : α) : Stream'.map f (Stream'.const a) = Stream'.const (f a) - Stream'.map_iterate 📋 Mathlib.Data.Stream.Init
{α : Type u} (f : α → α) (a : α) : Stream'.iterate f (f a) = Stream'.map f (Stream'.iterate f a) - Stream'.map.eq_1 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) (n : ℕ) : Stream'.map f s n = f (s.get n) - Stream'.get_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (n : ℕ) (s : Stream' α) : (Stream'.map f s).get n = f (s.get n) - Stream'.map_eq_apply 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : Stream'.map f s = Stream'.pure f ⊛ s - Stream'.map_tail 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : Stream'.map f s.tail = (Stream'.map f s).tail - Stream'.tail_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : (Stream'.map f s).tail = Stream'.map f s.tail - Stream'.corec_def 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (g : α → α) (a : α) : Stream'.corec f g a = Stream'.map f (Stream'.iterate g a) - Stream'.drop_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (n : ℕ) (s : Stream' α) : Stream'.drop n (Stream'.map f s) = Stream'.map f (Stream'.drop n s) - Stream'.map_take 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (n : ℕ) (a : Stream' α) (f : α → β) : List.map f (Stream'.take n a) = Stream'.take n (Stream'.map f a) - Stream'.map_cons 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (a : α) (s : Stream' α) : Stream'.map f (Stream'.cons a s) = Stream'.cons (f a) (Stream'.map f s) - Stream'.map_eq 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (s : Stream' α) : Stream'.map f s = Stream'.cons (f s.head) (Stream'.map f s.tail) - Stream'.mem_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) {a : α} {s : Stream' α} : a ∈ s → f a ∈ Stream'.map f s - Stream'.map_append_stream 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} (f : α → β) (l : List α) (s : Stream' α) : Stream'.map f (l ++ₛ s) = List.map f l ++ₛ Stream'.map f s - Stream'.map_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} {δ : Type w} (g : β → δ) (f : α → β) (s : Stream' α) : Stream'.map g (Stream'.map f s) = Stream'.map (g ∘ f) s - Stream'.inits_eq 📋 Mathlib.Data.Stream.Init
{α : Type u} (s : Stream' α) : s.inits = Stream'.cons [s.head] (Stream'.map (List.cons s.head) s.tail.inits) - Stream'.exists_of_mem_map 📋 Mathlib.Data.Stream.Init
{α : Type u} {β : Type v} {f : α → β} {b : β} {s : Stream' α} : b ∈ Stream'.map f s → ∃ a ∈ s, f a = b - Computation.map.eq_1 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Stream' (Option α)) (al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a) : Computation.map f ⟨s, al⟩ = ⟨Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s, ⋯⟩ - Stream'.Seq.ofStream.eq_1 📋 Mathlib.Data.Seq.Seq
{α : Type u} (s : Stream' α) : ↑s = ⟨Stream'.map some s, ⋯⟩ - Stream'.Seq.map.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Computation.Translations
{α : Type u} {β : Type v} (f : α → β) (s : Stream' (Option α)) (al : s.IsSeq) : Stream'.Seq.map f ⟨s, al⟩ = ⟨Stream'.map (Option.map f) s, ⋯⟩ - GenContFract.IntFractPair.coe_stream'_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : Stream'.map (Option.map (GenContFract.IntFractPair.mapFr Rat.cast)) (GenContFract.IntFractPair.stream q) = GenContFract.IntFractPair.stream v
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65