Loogle!
Result
Found 162 declarations mentioning Subgroup.map.
- Subgroup.map_id π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] (K : Subgroup G) : Subgroup.map (MonoidHom.id G) K = K - Subgroup.map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup G) : Subgroup N - Subgroup.map_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) : Subgroup.map f β₯ = β₯ - Subgroup.subgroupOf_map_subtype π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] (H K : Subgroup G) : Subgroup.map K.subtype (H.subgroupOf K) = H β K - Subgroup.le_comap_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup G) : H β€ Subgroup.comap f (Subgroup.map f H) - Subgroup.map_comap_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup N) : Subgroup.map f (Subgroup.comap f H) β€ H - Subgroup.gc_map_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) : GaloisConnection (Subgroup.map f) (Subgroup.comap f) - Subgroup.map_subgroupOf_eq_of_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H K : Subgroup G} (h : H β€ K) : Subgroup.map K.subtype (H.subgroupOf K) = H - Subgroup.map_iSup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {ΞΉ : Sort u_7} (f : G β* N) (s : ΞΉ β Subgroup G) : Subgroup.map f (iSup s) = β¨ i, Subgroup.map f (s i) - Subgroup.map_one_eq_bot π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] : Subgroup.map 1 K = β₯ - Subgroup.map_isCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G β* G') [IsMulCommutative β₯H] : IsMulCommutative β₯(Subgroup.map f H) - Subgroup.map_isMulCommutative π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G β* G') [IsMulCommutative β₯H] : IsMulCommutative β₯(Subgroup.map f H) - MonoidHom.map_closure π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (s : Set G) : Subgroup.map f (Subgroup.closure s) = Subgroup.closure (βf '' s) - Subgroup.map_inf_le π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G β* N) : Subgroup.map f (H β K) β€ Subgroup.map f H β Subgroup.map f K - Subgroup.map_top_of_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (h : Function.Surjective βf) : Subgroup.map f β€ = β€ - Subgroup.map_mono π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {K K' : Subgroup G} : K β€ K' β Subgroup.map f K β€ Subgroup.map f K' - Subgroup.map_le_iff_le_comap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {K : Subgroup G} {H : Subgroup N} : Subgroup.map f K β€ H β K β€ Subgroup.comap f H - Subgroup.map_sup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G β* N) : Subgroup.map f (H β K) = Subgroup.map f H β Subgroup.map f K - Subgroup.coe_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (K : Subgroup G) : β(Subgroup.map f K) = βf '' βK - Subgroup.map_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] {P : Type u_6} [Group P] (g : N β* P) (f : G β* N) : Subgroup.map g (Subgroup.map f K) = Subgroup.map (g.comp f) K - Subgroup.mem_map_of_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) {K : Subgroup G} {x : G} (hx : x β K) : f x β Subgroup.map f K - Subgroup.comap_equiv_eq_map_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : N β* G) (K : Subgroup G) : Subgroup.comap f.toMonoidHom K = Subgroup.map f.symm.toMonoidHom K - Subgroup.map_equiv_eq_comap_symm' π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (K : Subgroup G) : Subgroup.map f.toMonoidHom K = Subgroup.comap f.symm.toMonoidHom K - Subgroup.map_iInf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {ΞΉ : Sort u_7} [Nonempty ΞΉ] (f : G β* N) (hf : Function.Injective βf) (s : ΞΉ β Subgroup G) : Subgroup.map f (iInf s) = β¨ i, Subgroup.map f (s i) - Subgroup.map_inf π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G β* N) (hf : Function.Injective βf) : Subgroup.map f (H β K) = Subgroup.map f H β Subgroup.map f K - Subgroup.map_inf_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H K : Subgroup G) (f : G β* N) (hf : Function.Injective βf) : Subgroup.map f (H β K) = Subgroup.map f H β Subgroup.map f K - Subgroup.mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {K : Subgroup G} {y : N} : y β Subgroup.map f K β β x β K, f x = y - Subgroup.map_toSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (K : Subgroup G) : (Subgroup.map f K).toSubmonoid = Submonoid.map f K.toSubmonoid - Subgroup.apply_coe_mem_map π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (K : Subgroup G) (x : β₯K) : f βx β Subgroup.map f K - Subgroup.equivMapOfInjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G β* N) (hf : Function.Injective βf) : β₯H β* β₯(Subgroup.map f H) - Subgroup.map.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup G) : Subgroup.map f H = { carrier := βf '' βH, mul_mem' := β―, one_mem' := β―, inv_mem' := β― } - Subgroup.mem_map_iff_mem π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (hf : Function.Injective βf) {K : Subgroup G} {x : G} : f x β Subgroup.map f K β x β K - Subgroup.mem_map_equiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {K : Subgroup G} {x : N} : x β Subgroup.map f.toMonoidHom K β f.symm x β K - MulEquiv.coe_mapSubgroup π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_5} [Group H] (e : G β* H) : βe.mapSubgroup = Subgroup.map e.toMonoidHom - MonoidHom.subgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) : β₯H β* β₯(Subgroup.map f H) - Subgroup.map_eq_comap_of_inverse π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {g : N β* G} (hl : Function.LeftInverse βg βf) (hr : Function.RightInverse βg βf) (H : Subgroup G) : Subgroup.map f H = Subgroup.comap g H - MonoidHom.subgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) : f.subgroupMap H = f.submonoidMap H.toSubmonoid - Subgroup.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G β* N) (hf : Function.Injective βf) : H.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βH) hf, map_mul' := β― } - MulEquiv.mapSubgroup_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G β* H) (Hβ : Subgroup G) : f.mapSubgroup Hβ = Subgroup.map (βf) Hβ - MulEquiv.mapSubgroup_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G β* H) (Hβ : Subgroup H) : (RelIso.symm f.mapSubgroup) Hβ = Subgroup.map (βf.symm) Hβ - MulEquiv.mapSubgroup.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {H : Type u_6} [Group H] (f : G β* H) : f.mapSubgroup = { toFun := Subgroup.map βf, invFun := Subgroup.map βf.symm, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - Subgroup.comap_equiv_eq_map_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : N β* G) (K : Subgroup G) : Subgroup.comap (βf) K = Subgroup.map (βf.symm) K - Subgroup.map_equiv_eq_comap_symm π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (K : Subgroup G) : Subgroup.map (βf) K = Subgroup.comap (βf.symm) K - Subgroup.map_symm_eq_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] (K : Subgroup G) {N : Type u_5} [Group N] {H : Subgroup N} {e : G β* N} : Subgroup.map (βe.symm) H = K β Subgroup.map (βe) K = H - MulEquiv.subgroupMap π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G β* G') (H : Subgroup G) : β₯H β* β₯(Subgroup.map (βe) H) - MulEquiv.subgroupMap.eq_1 π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G β* G') (H : Subgroup G) : e.subgroupMap H = e.submonoidMap H.toSubmonoid - Subgroup.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G β* N) (hf : Function.Injective βf) (h : β₯H) : β((H.equivMapOfInjective f hf) h) = f βh - MonoidHom.subgroupMap_surjective π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) : Function.Surjective β(f.subgroupMap H) - Subgroup.equivMapOfInjective_coe_mulEquiv π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (e : G β* G') : H.equivMapOfInjective βe β― = e.subgroupMap H - MonoidHom.subgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) (x : β₯H.toSubmonoid) : β((f.subgroupMap H) x) = f βx - MulEquiv.coe_subgroupMap_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G β* G') (H : Subgroup G) (g : β₯H) : β((e.subgroupMap H) g) = e βg - MulEquiv.subgroupMap_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G β* G') (H : Subgroup G) (g : β₯(Subgroup.map (βe) H)) : (e.subgroupMap H).symm g = β¨e.symm βg, β―β© - MonoidHom.range_eq_map π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) : f.range = Subgroup.map f β€ - Subgroup.map_comap_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup N) : Subgroup.map f (Subgroup.comap f H) = f.range β H - Subgroup.map_le_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup G) : Subgroup.map f H β€ f.range - Subgroup.map_comap_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H : Subgroup N} (h : H β€ f.range) : Subgroup.map f (Subgroup.comap f H) = H - Subgroup.comap_map_eq π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) (H : Subgroup G) : Subgroup.comap f (Subgroup.map f H) = H β f.ker - Subgroup.map_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (h : Function.Injective βf) : Function.Injective (Subgroup.map f) - Subgroup.comap_map_eq_self π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H : Subgroup G} (h : f.ker β€ H) : Subgroup.comap f (Subgroup.map f H) = H - Subgroup.map_eq_bot_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) {f : G β* N} : Subgroup.map f H = β₯ β H β€ f.ker - Subgroup.map_subtype_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {H : Subgroup G} (K : Subgroup β₯H) : Subgroup.map H.subtype K β€ H - Subgroup.comap_map_eq_self_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (h : Function.Injective βf) (H : Subgroup G) : Subgroup.comap f (Subgroup.map f H) = H - Subgroup.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (h : Function.Surjective βf) (H : Subgroup N) : Subgroup.map f (Subgroup.comap f H) = H - MonoidHom.map_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} {P : Type u_6} [Group N] [Group P] (g : N β* P) (f : G β* N) : Subgroup.map g f.range = (g.comp f).range - MonoidHom.range_comp π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} {P : Type u_6} [Group N] [Group P] (g : N β* P) (f : G β* N) : (g.comp f).range = Subgroup.map g f.range - MonoidHom.range.eq_1 π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) : f.range = (Subgroup.map f β€).copy (Set.range βf) β― - Subgroup.map_eq_bot_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) {f : G β* N} (hf : Function.Injective βf) : Subgroup.map f H = β₯ β H = β₯ - MonoidHom.restrict_range π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (K : Subgroup G) (f : G β* N) : (f.restrict K).range = Subgroup.map f K - Subgroup.map_eq_range_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H : Subgroup G} : Subgroup.map f H = f.range β Codisjoint H f.ker - Subgroup.map_eq_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H K : Subgroup G} : Subgroup.map f H = Subgroup.map f K β H β f.ker = K β f.ker - Subgroup.map_le_map_iff π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H K : Subgroup G} : Subgroup.map f H β€ Subgroup.map f K β H β€ K β f.ker - Subgroup.map_injective_of_ker_le π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (f : G β* N) {H K : Subgroup G} (hH : f.ker β€ H) (hK : f.ker β€ K) (hf : Subgroup.map f H = Subgroup.map f K) : H = K - Subgroup.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (hf : Function.Injective βf) {H K : Subgroup G} : Subgroup.map f H β€ Subgroup.map f K β H β€ K - Subgroup.map_lt_map_iff_of_injective π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} (hf : Function.Injective βf) {H K : Subgroup G} : Subgroup.map f H < Subgroup.map f K β H < K - Subgroup.map_le_map_iff' π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {f : G β* N} {H K : Subgroup G} : Subgroup.map f H β€ Subgroup.map f K β H β f.ker β€ K β f.ker - Subgroup.ker_subgroupMap π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G β* N) : (f.subgroupMap H).ker = f.ker.subgroupOf H - Subgroup.map_subtype_le_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {G' : Subgroup G} {H K : Subgroup β₯G'} : Subgroup.map G'.subtype H β€ Subgroup.map G'.subtype K β H β€ K - Subgroup.map_subtype_lt_map_subtype π Mathlib.Algebra.Group.Subgroup.Ker
{G : Type u_1} [Group G] {G' : Subgroup G} {H K : Subgroup β₯G'} : Subgroup.map G'.subtype H < Subgroup.map G'.subtype K β H < K - AddMonoidHom.coe_toMultiplicative_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [AddGroup G] [AddGroup Gβ] (f : G β+ Gβ) (s : AddSubgroup G) : Subgroup.map (AddMonoidHom.toMultiplicative f) (AddSubgroup.toSubgroup s) = AddSubgroup.toSubgroup (AddSubgroup.map f s) - MonoidHom.coe_toAdditive_map π Mathlib.Algebra.Module.Submodule.Map
{G : Type u_10} {Gβ : Type u_11} [Group G] [Group Gβ] (f : G β* Gβ) (s : Subgroup G) : AddSubgroup.map (MonoidHom.toAdditive f) (Subgroup.toAddSubgroup s) = Subgroup.toAddSubgroup (Subgroup.map f s) - Subgroup.characteristic_iff_map_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {H : Subgroup G} : H.Characteristic β β (Ο : G β* G), Subgroup.map Ο.toMonoidHom H = H - Subgroup.le_normalizer_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {H : Subgroup G} {N : Type u_5} [Group N] (f : G β* N) : Subgroup.map f H.normalizer β€ (Subgroup.map f H).normalizer - Subgroup.characteristic_iff_le_map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {H : Subgroup G} : H.Characteristic β β (Ο : G β* G), H β€ Subgroup.map Ο.toMonoidHom H - Subgroup.characteristic_iff_map_le π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {H : Subgroup G} : H.Characteristic β β (Ο : G β* G), Subgroup.map Ο.toMonoidHom H β€ H - Subgroup.Normal.map π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {H : Subgroup G} (h : H.Normal) (f : G β* N) (hf : Function.Surjective βf) : (Subgroup.map f H).Normal - Subgroup.Normal.of_map_injective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_6} {H : Type u_7} [Group G] [Group H] {Ο : G β* H} (hΟ : Function.Injective βΟ) {L : Subgroup G} (n : (Subgroup.map Ο L).Normal) : L.Normal - Subgroup.Normal.of_map_subtype π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {K : Subgroup G} {L : Subgroup β₯K} (n : (Subgroup.map K.subtype L).Normal) : L.Normal - Subgroup.map_equiv_normalizer_eq π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) (f : G β* N) : Subgroup.map f.toMonoidHom H.normalizer = (Subgroup.map f.toMonoidHom H).normalizer - Subgroup.map_normalizer_eq_of_bijective π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (H : Subgroup G) {f : G β* N} (hf : Function.Bijective βf) : Subgroup.map f H.normalizer = (Subgroup.map f H).normalizer - Subgroup.map_normalClosure π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] (s : Set G) (f : G β* N) (hf : Function.Surjective βf) : Subgroup.map f (Subgroup.normalClosure s) = Subgroup.normalClosure (βf '' s) - Subgroup.le_pi_iff π Mathlib.Algebra.Group.Subgroup.Basic
{Ξ· : Type u_7} {f : Ξ· β Type u_8} [(i : Ξ·) β Group (f i)] {I : Set Ξ·} {H : (i : Ξ·) β Subgroup (f i)} {J : Subgroup ((i : Ξ·) β f i)} : J β€ Subgroup.pi I H β β i β I, Subgroup.map (Pi.evalMonoidHom f i) J β€ H i - Subgroup.le_prod_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {H : Subgroup G} {K : Subgroup N} {J : Subgroup (G Γ N)} : J β€ H.prod K β Subgroup.map (MonoidHom.fst G N) J β€ H β§ Subgroup.map (MonoidHom.snd G N) J β€ K - Subgroup.prod_le_iff π Mathlib.Algebra.Group.Subgroup.Basic
{G : Type u_1} [Group G] {N : Type u_5} [Group N] {H : Subgroup G} {K : Subgroup N} {J : Subgroup (G Γ N)} : H.prod K β€ J β Subgroup.map (MonoidHom.inl G N) H β€ J β§ Subgroup.map (MonoidHom.inr G N) K β€ J - MonoidHom.map_zpowers π Mathlib.Algebra.Group.Subgroup.ZPowers.Basic
{G : Type u_1} [Group G] {N : Type u_3} [Group N] (f : G β* N) (x : G) : Subgroup.map f (Subgroup.zpowers x) = Subgroup.zpowers (f x) - Subgroup.map_centralizer_le_centralizer_image π Mathlib.GroupTheory.Subgroup.Centralizer
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (s : Set G) (f : G β* G') : Subgroup.map f (Subgroup.centralizer s) β€ Subgroup.centralizer (βf '' s) - ConjAct.normal_of_characteristic_of_normal π Mathlib.GroupTheory.GroupAction.ConjAct
{G : Type u_3} [Group G] {H : Subgroup G} [hH : H.Normal] {K : Subgroup β₯H} [h : K.Characteristic] : (Subgroup.map H.subtype K).Normal - Subgroup.pointwise_smul_def π Mathlib.Algebra.Group.Subgroup.Pointwise
{Ξ± : Type u_1} {G : Type u_2} [Group G] [Monoid Ξ±] [MulDistribMulAction Ξ± G] {a : Ξ±} (S : Subgroup G) : a β’ S = Subgroup.map ((MulDistribMulAction.toMonoidEnd Ξ± G) a) S - Subgroup.card_map_of_injective π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [Group G] {H : Type u_3} [Group H] {K : Subgroup G} {f : G β* H} (hf : Function.Injective βf) : Nat.card β₯(Subgroup.map f K) = Nat.card β₯K - Subgroup.pi_le_iff π Mathlib.Algebra.Group.Subgroup.Finite
{Ξ· : Type u_3} {f : Ξ· β Type u_4} [(i : Ξ·) β Group (f i)] [DecidableEq Ξ·] [Finite Ξ·] {H : (i : Ξ·) β Subgroup (f i)} {J : Subgroup ((i : Ξ·) β f i)} : Subgroup.pi Set.univ H β€ J β β (i : Ξ·), Subgroup.map (MonoidHom.mulSingle f i) (H i) β€ J - Subgroup.card_subtype π Mathlib.Algebra.Group.Subgroup.Finite
{G : Type u_1} [Group G] (K : Subgroup G) (L : Subgroup β₯K) : Nat.card β₯(Subgroup.map K.subtype L) = Nat.card β₯L - QuotientGroup.map_mk'_self π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] : Subgroup.map (QuotientGroup.mk' N) N = β₯ - QuotientGroup.ker_lift π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [Monoid M] (Ο : G β* M) (HN : N β€ Ο.ker) : (QuotientGroup.lift N Ο HN).ker = Subgroup.map (QuotientGroup.mk' N) Ο.ker - QuotientGroup.ker_map π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] {H : Type v} [Group H] (M : Subgroup H) [M.Normal] (f : G β* H) (h : N β€ Subgroup.comap f M) : (QuotientGroup.map N M f h).ker = Subgroup.map (QuotientGroup.mk' N) (Subgroup.comap f M) - QuotientGroup.congr π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') : G β§Έ G' β* H β§Έ H' - QuotientGroup.congr_refl π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] (G' : Subgroup G) [G'.Normal] (he : Subgroup.map (β(MulEquiv.refl G)) G' = G' := β―) : QuotientGroup.congr G' G' (MulEquiv.refl G) he = MulEquiv.refl (G β§Έ G') - QuotientGroup.congr_mk π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') (x : G) : (QuotientGroup.congr G' H' e he) βx = β(e x) - QuotientGroup.congr_apply π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') (x : G) : (QuotientGroup.congr G' H' e he) βx = (QuotientGroup.mk' H') (e x) - QuotientGroup.congr_symm π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') : (QuotientGroup.congr G' H' e he).symm = QuotientGroup.congr H' G' e.symm β― - QuotientGroup.congr_mk' π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') (x : G) : (QuotientGroup.congr G' H' e he) ((QuotientGroup.mk' G') x) = (QuotientGroup.mk' H') (e x) - QuotientGroup.congr.eq_1 π Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u} [Group G] {H : Type v} [Group H] (G' : Subgroup G) (H' : Subgroup H) [G'.Normal] [H'.Normal] (e : G β* H) (he : Subgroup.map (βe) G' = H') : QuotientGroup.congr G' H' e he = { toFun := β(QuotientGroup.map G' H' βe β―), invFun := β(QuotientGroup.map H' G' βe.symm β―), left_inv := β―, right_inv := β―, map_mul' := β― } - QuotientGroup.map_normal π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] : (Subgroup.map (QuotientGroup.mk' N) M).Normal - QuotientGroup.comap_map_mk' π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N H : Subgroup G) [N.Normal] : Subgroup.comap (QuotientGroup.mk' N) (Subgroup.map (QuotientGroup.mk' N) H) = N β H - QuotientGroup.strictMono_comap_prod_map π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] : StrictMono fun H => (Subgroup.comap N.subtype H, Subgroup.map (QuotientGroup.mk' N) H) - QuotientGroup.quotientQuotientEquivQuotientAux π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ Subgroup.map (QuotientGroup.mk' N) M β* G β§Έ M - QuotientGroup.quotientQuotientEquivQuotient π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) : (G β§Έ N) β§Έ Subgroup.map (QuotientGroup.mk' N) M β* G β§Έ M - QuotientGroup.quotientQuotientEquivQuotientAux.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) : QuotientGroup.quotientQuotientEquivQuotientAux N M h = QuotientGroup.lift (Subgroup.map (QuotientGroup.mk' N) M) (QuotientGroup.map N M (MonoidHom.id G) h) β― - QuotientGroup.comapMk'OrderIso.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [hn : N.Normal] : QuotientGroup.comapMk'OrderIso N = { toFun := fun H' => β¨Subgroup.comap (QuotientGroup.mk' N) H', β―β©, invFun := fun H => Subgroup.map (QuotientGroup.mk' N) βH, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - QuotientGroup.quotientQuotientEquivQuotient.eq_1 π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) : QuotientGroup.quotientQuotientEquivQuotient N M h = (QuotientGroup.quotientQuotientEquivQuotientAux N M h).toMulEquiv (QuotientGroup.map M (Subgroup.map (QuotientGroup.mk' N) M) (QuotientGroup.mk' N) β―) β― β― - QuotientGroup.quotientQuotientEquivQuotientAux_mk_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) (x : G) : (QuotientGroup.quotientQuotientEquivQuotientAux N M h) ββx = βx - QuotientGroup.quotientQuotientEquivQuotientAux_mk π Mathlib.GroupTheory.QuotientGroup.Basic
{G : Type u} [Group G] (N : Subgroup G) [nN : N.Normal] (M : Subgroup G) [nM : M.Normal] (h : N β€ M) (x : G β§Έ N) : (QuotientGroup.quotientQuotientEquivQuotientAux N M h) βx = (QuotientGroup.map N M (MonoidHom.id G) h) x - Subgroup.map_commutator π Mathlib.GroupTheory.Commutator.Basic
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (Hβ Hβ : Subgroup G) (f : G β* G') : Subgroup.map f β Hβ, Hββ = β Subgroup.map f Hβ, Subgroup.map f Hββ - Subgroup.commutator_le_map_commutator π Mathlib.GroupTheory.Commutator.Basic
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {Hβ Hβ : Subgroup G} {f : G β* G'} {Kβ Kβ : Subgroup G'} (hβ : Kβ β€ Subgroup.map f Hβ) (hβ : Kβ β€ Subgroup.map f Hβ) : β Kβ, Kββ β€ Subgroup.map f β Hβ, Hββ - MulAction.stabilizer_smul_eq_stabilizer_map_conj π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [Group G] [MulAction G Ξ±] (g : G) (a : Ξ±) : MulAction.stabilizer G (g β’ a) = Subgroup.map (MulEquiv.toMonoidHom (MulAut.conj g)) (MulAction.stabilizer G a) - MulAction.stabilizerEquivStabilizerOfOrbitRel.eq_1 π Mathlib.GroupTheory.GroupAction.Basic
{G : Type u_1} {Ξ± : Type u_2} [Group G] [MulAction G Ξ±] {a b : Ξ±} (h : (MulAction.orbitRel G Ξ±) a b) : MulAction.stabilizerEquivStabilizerOfOrbitRel h = (MulEquiv.subgroupCongr β―).trans (MulEquiv.subgroupMap (MulAut.conj (Classical.choose h)) (MulAction.stabilizer G b)).symm - Subgroup.relindex_comap π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G' β* G) (K : Subgroup G') : (Subgroup.comap f H).relindex K = H.relindex (Subgroup.map f K) - Subgroup.relindex_ker π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (K : Subgroup G) (f : G β* G') : f.ker.relindex K = Nat.card β₯(Subgroup.map f K) - Subgroup.card_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G β* G') : Nat.card β₯(Subgroup.map f H) β£ Nat.card β₯H - Subgroup.dvd_index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) {f : G β* G'} (hf : f.ker β€ H) : H.index β£ (Subgroup.map f H).index - Subgroup.index_map_of_bijective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G β* G'} (hf : Function.Bijective βf) (H : Subgroup G) : (Subgroup.map f H).index = H.index - Subgroup.index_map_dvd π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) {f : G β* G'} (hf : Function.Surjective βf) : (Subgroup.map f H).index β£ H.index - Subgroup.index_map π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) (f : G β* G') : (Subgroup.map f H).index = (H β f.ker).index * f.range.index - Subgroup.index_map_subtype π Mathlib.GroupTheory.Index
{G : Type u_1} [Group G] {H : Subgroup G} (K : Subgroup β₯H) : (Subgroup.map H.subtype K).index = K.index * H.index - Subgroup.index_map_of_injective π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) {f : G β* G'} (hf : Function.Injective βf) : (Subgroup.map f H).index = H.index * f.range.index - Subgroup.index_map_eq π Mathlib.GroupTheory.Index
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (H : Subgroup G) {f : G β* G'} (hf1 : Function.Surjective βf) (hf2 : f.ker β€ H) : (Subgroup.map f H).index = H.index - map_commutator_eq π Mathlib.GroupTheory.Abelianization
(G : Type u) [Group G] {H : Type u_1} [Group H] (f : G β* H) : Subgroup.map f (commutator G) = β f.range, f.rangeβ - Subgroup.map_subtype_commutator π Mathlib.GroupTheory.Abelianization
{G : Type u} [Group G] (H : Subgroup G) : Subgroup.map H.subtype (commutator β₯H) = β H, Hβ - DenseRange.topologicalClosure_map_subgroup π Mathlib.Topology.Algebra.Group.Basic
{G : Type w} {H : Type x} [TopologicalSpace G] [Group G] [IsTopologicalGroup G] [Group H] [TopologicalSpace H] [IsTopologicalGroup H] {f : G β* H} (hf : Continuous βf) (hf' : DenseRange βf) {s : Subgroup G} (hs : s.topologicalClosure = β€) : (Subgroup.map f s).topologicalClosure = β€ - IsPGroup.map π Mathlib.GroupTheory.PGroup
{p : β} {G : Type u_1} [Group G] {H : Subgroup G} (hH : IsPGroup p β₯H) {K : Type u_2} [Group K] (Ο : G β* K) : IsPGroup p β₯(Subgroup.map Ο H) - Sylow.coe_mapSurjective π Mathlib.GroupTheory.Sylow
{p : β} {G : Type u_1} [Group G] [Finite G] {G' : Type u_2} [Group G'] {f : G β* G'} (hf : Function.Surjective βf) [Fact (Nat.Prime p)] (P : Sylow p G) : β(Sylow.mapSurjective hf P) = Subgroup.map f βP - Sylow.normalizer_sup_eq_top π Mathlib.GroupTheory.Sylow
{G : Type u_1} [Group G] {p : β} [Fact (Nat.Prime p)] {N : Subgroup G} [N.Normal] [Finite (Sylow p β₯N)] (P : Sylow p β₯N) : (Subgroup.map N.subtype βP).normalizer β N = β€ - map_rootsOfUnity π Mathlib.RingTheory.RootsOfUnity.Basic
{M : Type u_1} {N : Type u_2} [CommMonoid M] [CommMonoid N] (f : MΛ£ β* NΛ£) (k : β) : Subgroup.map f (rootsOfUnity k M) β€ rootsOfUnity k N - Subgroup.isCoatom_map π Mathlib.Algebra.Group.Subgroup.Order
{G : Type u_1} [Group G] (H : Subgroup G) (f : G β* β₯H) {K : Subgroup G} : IsCoatom (Subgroup.map (βf) K) β IsCoatom K - MulAction.map_stabilizer_le π Mathlib.Algebra.Pointwise.Stabilizer
{G : Type u_1} {H : Type u_2} [Group G] [Group H] (f : G β* H) (s : Set G) : Subgroup.map f (MulAction.stabilizer G s) β€ MulAction.stabilizer H (βf '' s) - map_derivedSeries_le_derivedSeries π Mathlib.GroupTheory.Solvable
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (n : β) : Subgroup.map f (derivedSeries G n) β€ derivedSeries G' n - map_derivedSeries_eq π Mathlib.GroupTheory.Solvable
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G β* G'} (hf : Function.Surjective βf) (n : β) : Subgroup.map f (derivedSeries G n) = derivedSeries G' n - derivedSeries_le_map_derivedSeries π Mathlib.GroupTheory.Solvable
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G β* G'} (hf : Function.Surjective βf) (n : β) : derivedSeries G' n β€ Subgroup.map f (derivedSeries G n) - IsPrimitiveRoot.map_rootsOfUnity π Mathlib.RingTheory.RootsOfUnity.PrimitiveRoots
{R : Type u_4} [CommRing R] [IsDomain R] {S : Type u_7} {F : Type u_8} [CommRing S] [IsDomain S] [FunLike F R S] [MonoidHomClass F R S] {ΞΆ : R} {n : β} [NeZero n] (hΞΆ : IsPrimitiveRoot ΞΆ n) {f : F} (hf : Function.Injective βf) : Subgroup.map (Units.map βf) (rootsOfUnity n R) = rootsOfUnity n S - InfiniteGalois.restrict_fixedField π Mathlib.FieldTheory.Galois.Infinite
{k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (H : Subgroup (K ββ[k] K)) (L : IntermediateField k K) [Normal k β₯L] : IntermediateField.fixedField H β L = IntermediateField.lift (IntermediateField.fixedField (Subgroup.map (AlgEquiv.restrictNormalHom β₯L) H)) - lowerCentralSeries.map π Mathlib.GroupTheory.Nilpotent
{G : Type u_1} [Group G] {H : Type u_2} [Group H] (f : G β* H) (n : β) : Subgroup.map f (lowerCentralSeries G n) β€ lowerCentralSeries H n - lowerCentralSeries_map_subtype_le π Mathlib.GroupTheory.Nilpotent
{G : Type u_1} [Group G] (H : Subgroup G) (n : β) : Subgroup.map H.subtype (lowerCentralSeries (β₯H) n) β€ lowerCentralSeries G n - upperCentralSeries.map π Mathlib.GroupTheory.Nilpotent
{G : Type u_1} [Group G] {H : Type u_2} [Group H] {f : G β* H} (h : Function.Surjective βf) (n : β) : Subgroup.map f (upperCentralSeries G n) β€ upperCentralSeries H n - Subgroup.goursatFst.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [Group G] [Group H] (I : Subgroup (G Γ H)) : I.goursatFst = Subgroup.map ((MonoidHom.fst G H).comp I.subtype) ((MonoidHom.snd G H).comp I.subtype).ker - Subgroup.goursatSnd.eq_1 π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [Group G] [Group H] (I : Subgroup (G Γ H)) : I.goursatSnd = Subgroup.map ((MonoidHom.snd G H).comp I.subtype) ((MonoidHom.fst G H).comp I.subtype).ker - Subgroup.goursat π Mathlib.GroupTheory.Goursat
{G : Type u_1} {H : Type u_2} [Group G] [Group H] {I : Subgroup (G Γ H)} : β G' H' M N, β (x : M.Normal) (x_1 : N.Normal), β e, I = Subgroup.map (G'.subtype.prodMap H'.subtype) (Subgroup.comap ((QuotientGroup.mk' M).prodMap (QuotientGroup.mk' N)) e.toMonoidHom.graph) - MulAction.IsBlock.of_subgroup_of_conjugate π Mathlib.GroupTheory.GroupAction.Blocks
{G : Type u_1} [Group G] {X : Type u_2} [MulAction G X] {B : Set X} {H : Subgroup G} (hB : MulAction.IsBlock (β₯H) B) (g : G) : MulAction.IsBlock (β₯(Subgroup.map (MulEquiv.toMonoidHom (MulAut.conj g)) H)) (g β’ B) - Equiv.Perm.OnCycleFactors.kerParam_range_eq π Mathlib.GroupTheory.Perm.Centralizer
{Ξ± : Type u_1} [DecidableEq Ξ±] [Fintype Ξ±] {g : Equiv.Perm Ξ±} : (Equiv.Perm.OnCycleFactors.kerParam g).range = Subgroup.map (Subgroup.centralizer {g}).subtype (Equiv.Perm.OnCycleFactors.toPermHom g).ker - CongruenceSubgroup.Gamma1.eq_1 π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(N : β) : CongruenceSubgroup.Gamma1 N = Subgroup.map ((CongruenceSubgroup.Gamma0 N).subtype.comp (CongruenceSubgroup.Gamma1' N).subtype) β€ - CongruenceSubgroup.conjGLPos.eq_1 π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)) (g : β₯(Matrix.GLPos (Fin 2) β)) : CongruenceSubgroup.conjGLPos Ξ g = Subgroup.comap ModularGroup.coeHom (ConjAct.toConjAct gβ»ΒΉ β’ Subgroup.map ModularGroup.coeHom Ξ) - CuspForm.translate π Mathlib.NumberTheory.ModularForms.Basic
{k : β€} {Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {F : Type u_1} [FunLike F UpperHalfPlane β] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) β€) [CuspFormClass F Ξ k] : CuspForm (Subgroup.map (β(MulAut.conj gβ»ΒΉ)) Ξ) k - ModularForm.translate π Mathlib.NumberTheory.ModularForms.Basic
{k : β€} {Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {F : Type u_1} [FunLike F UpperHalfPlane β] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) β€) [ModularFormClass F Ξ k] : ModularForm (Subgroup.map (β(MulAut.conj gβ»ΒΉ)) Ξ) k - CuspForm.coe_translate π Mathlib.NumberTheory.ModularForms.Basic
{k : β€} {Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {F : Type u_1} [FunLike F UpperHalfPlane β] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) β€) [CuspFormClass F Ξ k] : β(CuspForm.translate f g) = SlashAction.map β k g βf - ModularForm.coe_translate π Mathlib.NumberTheory.ModularForms.Basic
{k : β€} {Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {F : Type u_1} [FunLike F UpperHalfPlane β] (f : F) (g : Matrix.SpecialLinearGroup (Fin 2) β€) [ModularFormClass F Ξ k] : β(ModularForm.translate f g) = SlashAction.map β k g βf
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08