Loogle!
Result
Found 67 declarations mentioning Submodule and OrderIso.
- AddSubgroup.toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] : AddSubgroup M βo Submodule β€ M - AddSubmonoid.toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] : AddSubmonoid M βo Submodule β M - AddSubgroup.toIntSubmodule_toAddSubgroup π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : AddSubgroup M) : (AddSubgroup.toIntSubmodule S).toAddSubgroup = S - AddSubmonoid.toNatSubmodule_toAddSubmonoid π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : AddSubmonoid M) : (AddSubmonoid.toNatSubmodule S).toAddSubmonoid = S - Submodule.toAddSubmonoid_toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : Submodule β M) : AddSubmonoid.toNatSubmodule S.toAddSubmonoid = S - Submodule.toAddSubgroup_toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : Submodule β€ M) : AddSubgroup.toIntSubmodule S.toAddSubgroup = S - AddSubgroup.coe_toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : AddSubgroup M) : β(AddSubgroup.toIntSubmodule S) = βS - AddSubmonoid.coe_toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : AddSubmonoid M) : β(AddSubmonoid.toNatSubmodule S) = βS - AddSubmonoid.toNatSubmodule_symm π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] : βAddSubmonoid.toNatSubmodule.symm = Submodule.toAddSubmonoid - AddSubgroup.toIntSubmodule_symm π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] : βAddSubgroup.toIntSubmodule.symm = Submodule.toAddSubgroup - Submodule.orderIsoMapComap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) : Submodule R M βo Submodule Rβ Mβ - Submodule.orderIsoMapComapOfBijective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (hf : Function.Bijective βf) : Submodule R M βo Submodule Rβ Mβ - Submodule.orderIsoMapComap_symm_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule Rβ Mβ) : (Submodule.orderIsoMapComap f).symm p = Submodule.comap f p - Submodule.orderIsoMapComap_apply' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (p : Submodule R M) : (Submodule.orderIsoMapComap e) p = Submodule.comap e.symm p - Submodule.orderIsoMapComap_symm_apply' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (p : Submodule Rβ Mβ) : (Submodule.orderIsoMapComap e).symm p = Submodule.map e.symm p - Submodule.AddMonoidHom.coe_toIntLinearMap_comap π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup Aβ) : Submodule.comap f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.comap f s) - AddMonoidHom.coe_toIntLinearMap_map π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - AddMonoidHom.coe_toIntLinearMap_ker π Mathlib.Algebra.Module.Submodule.Ker
{M : Type u_12} {Mβ : Type u_13} [AddCommGroup M] [AddCommGroup Mβ] (f : M β+ Mβ) : LinearMap.ker f.toIntLinearMap = AddSubgroup.toIntSubmodule f.ker - Submodule.toIntSubmodule_toAddSubgroup π Mathlib.Algebra.Module.Submodule.RestrictScalars
{R : Type u_4} {M : Type u_5} [Ring R] [AddCommGroup M] [Module R M] (N : Submodule R M) : AddSubgroup.toIntSubmodule N.toAddSubgroup = Submodule.restrictScalars β€ N - AddMonoidHom.coe_toIntLinearMap_range π Mathlib.Algebra.Module.Submodule.Range
{M : Type u_11} {Mβ : Type u_12} [AddCommGroup M] [AddCommGroup Mβ] (f : M β+ Mβ) : LinearMap.range f.toIntLinearMap = AddSubgroup.toIntSubmodule f.range - Submodule.mapIic π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule R β₯p βo β(Set.Iic p) - Submodule.MapSubtype.orderIso π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule R β₯p βo { p' // p' β€ p } - Submodule.MapSubtype.relIso π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule R β₯p βo { p' // p' β€ p } - Submodule.coe_mapIic_apply π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (q : Submodule R β₯p) : β(p.mapIic q) = Submodule.map p.subtype q - AddSubgroup.toIntSubmodule_closure π Mathlib.LinearAlgebra.Span.Basic
{M : Type u_4} [AddCommGroup M] (s : Set M) : AddSubgroup.toIntSubmodule (AddSubgroup.closure s) = Submodule.span β€ s - AddSubmonoid.toNatSubmodule_closure π Mathlib.LinearAlgebra.Span.Basic
{M : Type u_4} [AddCommMonoid M] (s : Set M) : AddSubmonoid.toNatSubmodule (AddSubmonoid.closure s) = Submodule.span β s - Submodule.negOrderIso π Mathlib.Algebra.Module.Submodule.Pointwise
{R : Type u_2} {M : Type u_3} [Semiring R] [AddCommGroup M] [Module R M] : Submodule R M βo Submodule R M - Module.Basis.addSubgroupOfClosure π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Module.Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) : Module.Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule A) - Module.Basis.addSubgroupOfClosure.congr_simp π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b bβ : Module.Basis ΞΉ R M) (e_b : b = bβ) (h : A = AddSubgroup.closure (Set.range βb)) : Module.Basis.addSubgroupOfClosure A b h = Module.Basis.addSubgroupOfClosure A bβ β― - Module.Basis.addSubgroupOfClosure.eq_1 π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Module.Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) : Module.Basis.addSubgroupOfClosure A b h = (Module.Basis.restrictScalars β€ b).map (LinearEquiv.ofEq (Submodule.span β€ (Set.range βb)) (AddSubgroup.toIntSubmodule A) β―) - Module.Basis.addSubgroupOfClosure_apply π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Module.Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) (i : ΞΉ) : β((Module.Basis.addSubgroupOfClosure A b h) i) = b i - Module.Basis.addSubgroupOfClosure_repr_apply π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Module.Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) (x : β₯A) (i : ΞΉ) : β(((Module.Basis.addSubgroupOfClosure A b h).repr x) i) = (b.repr βx) i - Submodule.comapMkQRelIso π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M β§Έ p) βo β(Set.Ici p) - Module.mapEvalEquiv π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] : Submodule R M βo Submodule R (Module.Dual R (Module.Dual R M)) - Module.mapEvalEquiv_apply π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] (W : Submodule R M) : (Module.mapEvalEquiv R M) W = Submodule.map (Module.Dual.eval R M) W - Module.mapEvalEquiv_symm_apply π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] (W'' : Submodule R (Module.Dual R (Module.Dual R M))) : (Module.mapEvalEquiv R M).symm W'' = Submodule.comap (Module.Dual.eval R M) W'' - Subspace.dualAnnihilator_dualAnnihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Submodule.dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W - ModuleCat.subobjectModule π Mathlib.Algebra.Category.ModuleCat.Subobject
{R : Type u} [Ring R] (M : ModuleCat R) : CategoryTheory.Subobject M βo Submodule R βM - AddSubgroup.toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] : AddSubgroup M βo Submodule (ZMod n) M - AddSubgroup.toZModSubmodule_toAddSubgroup π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : AddSubgroup M) : ((AddSubgroup.toZModSubmodule n) S).toAddSubgroup = S - Submodule.toAddSubgroup_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : Submodule (ZMod n) M) : (AddSubgroup.toZModSubmodule n) S.toAddSubgroup = S - AddSubgroup.coe_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : AddSubgroup M) : β((AddSubgroup.toZModSubmodule n) S) = βS - AddSubgroup.mem_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] {x : M} {S : AddSubgroup M} : x β (AddSubgroup.toZModSubmodule n) S β x β S - AddSubgroup.toZModSubmodule_symm π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] : β(AddSubgroup.toZModSubmodule n).symm = Submodule.toAddSubgroup - Submodule.submodule_torsionBy_orderIso π Mathlib.Algebra.Module.Torsion
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (a : R) : Submodule (R β§Έ Submodule.span R {a}) β₯(Submodule.torsionBy R M a) βo Submodule R β₯(Submodule.torsionBy R M a) - Submodule.orderIsoMapComap.congr_simp π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ Οβββ : R β+* Rβ} (e_Οββ : Οββ = Οβββ) [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f fβ : F) (e_f : f = fβ) : Submodule.orderIsoMapComap f = Submodule.orderIsoMapComap fβ - Module.AEval.mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_1) {A : Type u_2} (M : Type u_3) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] : β₯((Algebra.lsmul R R M) a).invtSubmodule βo Submodule (Polynomial R) (Module.AEval R M a) - Module.AEval.mem_mapSubmodule_apply π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_2) {A : Type u_3} (M : Type u_1) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] {p : β₯((Algebra.lsmul R R M) a).invtSubmodule} {m : Module.AEval R M a} : m β (Module.AEval.mapSubmodule R M a) p β (Module.AEval.of R M a).symm m β βp - Module.AEval.mem_mapSubmodule_symm_apply π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_1) {A : Type u_3} (M : Type u_2) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] {q : Submodule (Polynomial R) (Module.AEval R M a)} {m : M} : m β β((Module.AEval.mapSubmodule R M a).symm q) β (Module.AEval.of R M a) m β q - Module.AEval.equiv_mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : β₯p ββ[R] β₯((Module.AEval.mapSubmodule R M a) β¨p, hpβ©) - Module.AEval.restrict_equiv_mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : Module.AEval R (β₯p) (LinearMap.restrict ((Algebra.lsmul R R M) a) hp) ββ[Polynomial R] β₯((Module.AEval.mapSubmodule R M a) β¨p, hpβ©) - Module.AEval.equiv_mapSubmodule.eq_1 π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : Module.AEval.equiv_mapSubmodule a p hp = { toFun := fun x => β¨(Module.AEval.of R M a) βx, β―β©, map_add' := β―, map_smul' := β―, invFun := fun x => β¨(Module.AEval.of R M a).symm βx, β―β©, left_inv := β―, right_inv := β― } - exteriorPower.ΞΉMulti_family.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] {I : Type u_4} [LinearOrder I] (v : I β M) (s : { s // s.card = n }) : exteriorPower.ΞΉMulti_family R n v s = (exteriorPower.ΞΉMulti R n) fun i => v β(((βs).orderIsoOfFin β―) i) - IsLocalization.AtPrime.coe_primeSpectrumOrderIso_symm_apply_asIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : β(Set.Iic { asIdeal := I, isPrime := hI })) : β((RelIso.symm (IsLocalization.AtPrime.primeSpectrumOrderIso S I)) aβ).asIdeal = β s, β (_ : ββ((OrderIso.setCongr (fun p => p.IsPrime β§ Disjoint βI.primeCompl βp) (fun p => p.IsPrime β§ p β€ I) β―).symm β¨(βaβ).asIdeal, β―β©) β β(algebraMap R S) β»ΒΉ' βs), βs - IsLocalization.AtPrime.coe_orderIsoOfPrime_symm_apply_coe π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : { p // p.IsPrime β§ p β€ I }) : ββ((RelIso.symm (IsLocalization.AtPrime.orderIsoOfPrime S I)) aβ) = β s, β (_ : ββ((OrderIso.setCongr (fun p => p.IsPrime β§ Disjoint βI.primeCompl βp) (fun p => p.IsPrime β§ p β€ I) β―).symm aβ) β β(algebraMap R S) β»ΒΉ' βs), βs - Representation.mapSubmodule π Mathlib.RepresentationTheory.Submodule
{k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (Ο : Representation k G V) : β₯Ο.invtSubmodule βo Submodule (MonoidAlgebra k G) Ο.asModule - AddSubgroup.relIndex_eq_natAbs_det π Mathlib.LinearAlgebra.FreeModule.Finite.CardQuotient
{E : Type u_1} [AddCommGroup E] (Lβ Lβ : AddSubgroup E) (H : Lβ β€ Lβ) {ΞΉ : Type u_2} [DecidableEq ΞΉ] [Fintype ΞΉ] (bβ : Module.Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) (bβ : Module.Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) : Lβ.relIndex Lβ = (bβ.det fun i => β¨β(bβ i), β―β©).natAbs - AddSubgroup.relindex_eq_natAbs_det π Mathlib.LinearAlgebra.FreeModule.Finite.CardQuotient
{E : Type u_1} [AddCommGroup E] (Lβ Lβ : AddSubgroup E) (H : Lβ β€ Lβ) {ΞΉ : Type u_2} [DecidableEq ΞΉ] [Fintype ΞΉ] (bβ : Module.Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) (bβ : Module.Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) : Lβ.relIndex Lβ = (bβ.det fun i => β¨β(bβ i), β―β©).natAbs - HahnEmbedding.Partial.orderTop_eq_archimedeanClassMk π Mathlib.Algebra.Order.Module.HahnEmbedding
{K : Type u_1} [DivisionRing K] [LinearOrder K] [IsOrderedRing K] [Archimedean K] {M : Type u_2} [AddCommGroup M] [LinearOrder M] [IsOrderedAddMonoid M] [Module K M] [IsOrderedModule K M] {R : Type u_3} [AddCommGroup R] [LinearOrder R] [Module K R] {seed : HahnEmbedding.Seed K M R} (f : HahnEmbedding.Partial seed) [IsOrderedAddMonoid R] [Archimedean R] (x : β₯(βf).domain) : (FiniteArchimedeanClass.withTopOrderIso M) (ofLex (ββf x)).orderTop = ArchimedeanClass.mk βx - Submodule.projectivization π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : Submodule K V βo Projectivization.Subspace K V - Projectivization.Subspace.submodule π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] : Projectivization.Subspace K V βo Submodule K V - Projectivization.Subspace.mem_submodule_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Projectivization.Subspace K V) {v : V} (hv : v β 0) : v β Projectivization.Subspace.submodule s β Projectivization.mk K v hv β s - Submodule.mk_mem_projectivization_iff π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Submodule K V) {v : V} (hv : v β 0) : Projectivization.mk K v hv β Submodule.projectivization s β v β s - Submodule.mem_projectivization_iff_submodule_le π Mathlib.LinearAlgebra.Projectivization.Subspace
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] (s : Submodule K V) (x : Projectivization K V) : x β Submodule.projectivization s β x.submodule β€ s - OrderIso.setIsotypicComponents π Mathlib.RingTheory.SimpleModule.Isotypic
{R : Type u_2} {M : Type u} [Ring R] [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] : Set β(isotypicComponents R M) βo β₯(fullyInvariantSubmodule R M) - Submodule.MapSubtype.orderIso.eq_1 π Mathlib.RingTheory.SimpleModule.Isotypic
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.MapSubtype.orderIso p = { toFun := fun p' => β¨Submodule.map p.subtype p', β―β©, invFun := fun q => Submodule.comap p.subtype βq, left_inv := β―, right_inv := β―, map_rel_iff' := β― } - OrderIso.setIsotypicComponents.eq_1 π Mathlib.RingTheory.SimpleModule.Isotypic
{R : Type u_2} {M : Type u} [Ring R] [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] : OrderIso.setIsotypicComponents = { toFun := fun s => β¨ c β s, β¨βc, β―β©, invFun := fun m => {c | βc β€ βm}, left_inv := β―, right_inv := β―, map_rel_iff' := β― }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision c6541c0