Loogle!
Result
Found 49 declarations mentioning Submodule and OrderIso.
- AddSubgroup.toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] : AddSubgroup M βo Submodule β€ M - AddSubmonoid.toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] : AddSubmonoid M βo Submodule β M - AddSubgroup.toIntSubmodule_toAddSubgroup π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : AddSubgroup M) : (AddSubgroup.toIntSubmodule S).toAddSubgroup = S - AddSubmonoid.toNatSubmodule_toAddSubmonoid π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : AddSubmonoid M) : (AddSubmonoid.toNatSubmodule S).toAddSubmonoid = S - Submodule.toAddSubmonoid_toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : Submodule β M) : AddSubmonoid.toNatSubmodule S.toAddSubmonoid = S - Submodule.toAddSubgroup_toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : Submodule β€ M) : AddSubgroup.toIntSubmodule S.toAddSubgroup = S - AddSubgroup.coe_toIntSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] (S : AddSubgroup M) : β(AddSubgroup.toIntSubmodule S) = βS - AddSubmonoid.coe_toNatSubmodule π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] (S : AddSubmonoid M) : β(AddSubmonoid.toNatSubmodule S) = βS - AddSubmonoid.toNatSubmodule_symm π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommMonoid M] : βAddSubmonoid.toNatSubmodule.symm = Submodule.toAddSubmonoid - AddSubgroup.toIntSubmodule_symm π Mathlib.Algebra.Module.Submodule.Lattice
{M : Type u_3} [AddCommGroup M] : βAddSubgroup.toIntSubmodule.symm = Submodule.toAddSubgroup - Submodule.orderIsoMapComap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) : Submodule R M βo Submodule Rβ Mβ - Submodule.orderIsoMapComapOfBijective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (hf : Function.Bijective βf) : Submodule R M βo Submodule Rβ Mβ - Submodule.orderIsoMapComap_symm_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule Rβ Mβ) : (Submodule.orderIsoMapComap f).symm p = Submodule.comap f p - Submodule.orderIsoMapComap_apply' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (p : Submodule R M) : (Submodule.orderIsoMapComap e) p = Submodule.comap e.symm p - Submodule.orderIsoMapComap_symm_apply' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (p : Submodule Rβ Mβ) : (Submodule.orderIsoMapComap e).symm p = Submodule.map e.symm p - Submodule.AddMonoidHom.coe_toIntLinearMap_comap π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup Aβ) : Submodule.comap f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.comap f s) - AddMonoidHom.coe_toIntLinearMap_map π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - AddMonoidHom.coe_toIntLinearMap_ker π Mathlib.Algebra.Module.Submodule.Ker
{M : Type u_12} {Mβ : Type u_13} [AddCommGroup M] [AddCommGroup Mβ] (f : M β+ Mβ) : LinearMap.ker f.toIntLinearMap = AddSubgroup.toIntSubmodule f.ker - AddMonoidHom.coe_toIntLinearMap_range π Mathlib.Algebra.Module.Submodule.Range
{M : Type u_11} {Mβ : Type u_12} [AddCommGroup M] [AddCommGroup Mβ] (f : M β+ Mβ) : LinearMap.range f.toIntLinearMap = AddSubgroup.toIntSubmodule f.range - Submodule.mapIic π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule R β₯p βo β(Set.Iic p) - Submodule.MapSubtype.relIso π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule R β₯p βo { p' // p' β€ p } - Submodule.coe_mapIic_apply π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (q : Submodule R β₯p) : β(p.mapIic q) = Submodule.map p.subtype q - Submodule.negOrderIso π Mathlib.Algebra.Module.Submodule.Pointwise
{R : Type u_2} {M : Type u_3} [Semiring R] [AddCommGroup M] [Module R M] : Submodule R M βo Submodule R M - Basis.addSubgroupOfClosure π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) : Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule A) - Basis.addSubgroupOfClosure.eq_1 π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) : Basis.addSubgroupOfClosure A b h = (Basis.restrictScalars β€ b).map (LinearEquiv.ofEq (Submodule.span β€ (Set.range βb)) (AddSubgroup.toIntSubmodule A) β―) - Basis.addSubgroupOfClosure_apply π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) (i : ΞΉ) : β((Basis.addSubgroupOfClosure A b h) i) = b i - Basis.addSubgroupOfClosure_repr_apply π Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors β€ R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ΞΉ : Type u_9} (b : Basis ΞΉ R M) (h : A = AddSubgroup.closure (Set.range βb)) (x : β₯A) (i : ΞΉ) : β(((Basis.addSubgroupOfClosure A b h).repr x) i) = (b.repr βx) i - Submodule.comapMkQRelIso π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule R (M β§Έ p) βo β(Set.Ici p) - Module.mapEvalEquiv π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] : Submodule R M βo Submodule R (Module.Dual R (Module.Dual R M)) - Module.mapEvalEquiv_apply π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] (W : Submodule R M) : (Module.mapEvalEquiv R M) W = Submodule.map (Module.Dual.eval R M) W - Module.mapEvalEquiv_symm_apply π Mathlib.LinearAlgebra.Dual.Defs
(R : Type u_3) (M : Type u_4) [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.IsReflexive R M] (W'' : Submodule R (Module.Dual R (Module.Dual R M))) : (Module.mapEvalEquiv R M).symm W'' = Submodule.comap (Module.Dual.eval R M) W'' - Subspace.dualAnnihilator_dualAnnihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Submodule.dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W - ModuleCat.subobjectModule π Mathlib.Algebra.Category.ModuleCat.Subobject
{R : Type u} [Ring R] (M : ModuleCat R) : CategoryTheory.Subobject M βo Submodule R βM - AddSubgroup.toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] : AddSubgroup M βo Submodule (ZMod n) M - AddSubgroup.toZModSubmodule_toAddSubgroup π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : AddSubgroup M) : ((AddSubgroup.toZModSubmodule n) S).toAddSubgroup = S - Submodule.toAddSubgroup_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : Submodule (ZMod n) M) : (AddSubgroup.toZModSubmodule n) S.toAddSubgroup = S - AddSubgroup.coe_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] (S : AddSubgroup M) : β((AddSubgroup.toZModSubmodule n) S) = βS - AddSubgroup.mem_toZModSubmodule π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] {x : M} {S : AddSubgroup M} : x β (AddSubgroup.toZModSubmodule n) S β x β S - AddSubgroup.toZModSubmodule_symm π Mathlib.Algebra.Module.ZMod
(n : β) {M : Type u_1} [AddCommGroup M] [Module (ZMod n) M] : β(AddSubgroup.toZModSubmodule n).symm = Submodule.toAddSubgroup - Submodule.submodule_torsionBy_orderIso π Mathlib.Algebra.Module.Torsion
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (a : R) : Submodule (R β§Έ Submodule.span R {a}) β₯(Submodule.torsionBy R M a) βo Submodule R β₯(Submodule.torsionBy R M a) - Module.AEval.mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_1) {A : Type u_2} (M : Type u_3) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] : β₯((Algebra.lsmul R R M) a).invtSubmodule βo Submodule (Polynomial R) (Module.AEval R M a) - Module.AEval.mem_mapSubmodule_apply π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_2) {A : Type u_3} (M : Type u_1) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] {p : β₯((Algebra.lsmul R R M) a).invtSubmodule} {m : Module.AEval R M a} : m β (Module.AEval.mapSubmodule R M a) p β (Module.AEval.of R M a).symm m β βp - Module.AEval.mem_mapSubmodule_symm_apply π Mathlib.Algebra.Polynomial.Module.AEval
(R : Type u_1) {A : Type u_3} (M : Type u_2) [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] {q : Submodule (Polynomial R) (Module.AEval R M a)} {m : M} : m β β((Module.AEval.mapSubmodule R M a).symm q) β (Module.AEval.of R M a) m β q - Module.AEval.equiv_mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : β₯p ββ[R] β₯((Module.AEval.mapSubmodule R M a) β¨p, hpβ©) - Module.AEval.restrict_equiv_mapSubmodule π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : Module.AEval R (β₯p) (LinearMap.restrict ((Algebra.lsmul R R M) a) hp) ββ[Polynomial R] β₯((Module.AEval.mapSubmodule R M a) β¨p, hpβ©) - Module.AEval.equiv_mapSubmodule.eq_1 π Mathlib.Algebra.Polynomial.Module.AEval
{R : Type u_1} {A : Type u_2} {M : Type u_3} [CommSemiring R] [Semiring A] (a : A) [Algebra R A] [AddCommMonoid M] [Module A M] [Module R M] [IsScalarTower R A M] (p : Submodule R M) (hp : p β ((Algebra.lsmul R R M) a).invtSubmodule) : Module.AEval.equiv_mapSubmodule a p hp = { toFun := fun x => β¨(Module.AEval.of R M a) βx, β―β©, map_add' := β―, map_smul' := β―, invFun := fun x => β¨(Module.AEval.of R M a).symm βx, β―β©, left_inv := β―, right_inv := β― } - exteriorPower.ΞΉMulti_family.eq_1 π Mathlib.LinearAlgebra.ExteriorPower.Basic
(R : Type u) [CommRing R] (n : β) {M : Type u_1} [AddCommGroup M] [Module R M] {I : Type u_4} [LinearOrder I] (v : I β M) (s : { s // s.card = n }) : exteriorPower.ΞΉMulti_family R n v s = (exteriorPower.ΞΉMulti R n) fun i => v β(((βs).orderIsoOfFin β―) i) - AddSubgroup.relindex_eq_natAbs_det π Mathlib.LinearAlgebra.FreeModule.Finite.CardQuotient
{E : Type u_1} [AddCommGroup E] (Lβ Lβ : AddSubgroup E) (H : Lβ β€ Lβ) {ΞΉ : Type u_2} [DecidableEq ΞΉ] [Fintype ΞΉ] (bβ : Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) (bβ : Basis ΞΉ β€ β₯(AddSubgroup.toIntSubmodule Lβ)) : Lβ.relindex Lβ = (bβ.det fun i => β¨β(bβ i), β―β©).natAbs - Representation.mapSubmodule π Mathlib.RepresentationTheory.Submodule
{k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (Ο : Representation k G V) : β₯Ο.invtSubmodule βo Submodule (MonoidAlgebra k G) Ο.asModule
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65