Loogle!
Result
Found 9 declarations mentioning Submodule.baseChange.
- Submodule.baseChange 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule A (TensorProduct R A M) - Submodule.baseChange_bot 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : Submodule.baseChange A ⊥ = ⊥ - Submodule.baseChange_top 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] : Submodule.baseChange A ⊤ = ⊤ - Submodule.tmul_mem_baseChange_of_mem 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} {A : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] {p : Submodule R M} (a : A) {m : M} (hm : m ∈ p) : a ⊗ₜ[R] m ∈ Submodule.baseChange A p - Submodule.baseChange.eq_1 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.baseChange A p = (LinearMap.baseChange A p.subtype).range - Submodule.baseChange_span 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (s : Set M) : Submodule.baseChange A (Submodule.span R s) = Submodule.span A (⇑((TensorProduct.mk R A M) 1) '' s) - Submodule.baseChange_eq_span 📋 Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.baseChange A p = Submodule.span A ↑(Submodule.map ((TensorProduct.mk R A M) 1) p) - LieSubmodule.coe_baseChange 📋 Mathlib.Algebra.Lie.BaseChange
(R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (N : LieSubmodule R L M) : ↑(LieSubmodule.baseChange A N) = Submodule.baseChange A ↑N - LieSubmodule.baseChange.eq_1 📋 Mathlib.Algebra.Lie.BaseChange
{R : Type u_1} (A : Type u_2) {L : Type u_3} {M : Type u_4} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] (N : LieSubmodule R L M) : LieSubmodule.baseChange A N = { toSubmodule := Submodule.baseChange A ↑N, lie_mem := ⋯ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454