Loogle!
Result
Found 341 declarations mentioning Submodule.map. Of these, only the first 200 are shown.
- Submodule.map π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule R M) : Submodule Rβ Mβ - Submodule.map_injective_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) : Function.Injective (Submodule.map f) - Submodule.map_surjective_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) : Function.Surjective (Submodule.map f) - Submodule.map_id π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.map LinearMap.id p = p - Submodule.map_bot π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) : Submodule.map f β₯ = β₯ - Submodule.comap_map_eq_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) (p : Submodule R M) : Submodule.comap f (Submodule.map f p) = p - Submodule.map_comap_eq_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) (p : Submodule Rβ Mβ) : Submodule.map f (Submodule.comap f p) = p - Submodule.map_coe π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule R M) : β(Submodule.map f p) = βf '' βp - Submodule.map_eq_bot_iff π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {e : F} : Submodule.map e p = β₯ β p = β₯ - Submodule.map_eq_top_iff π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {e : F} : Submodule.map e p = β€ β p = β€ - Submodule.map_ne_bot_iff π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {e : F} : Submodule.map e p β β₯ β p β β₯ - Submodule.map_ne_top_iff π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {e : F} : Submodule.map e p β β€ β p β β€ - Submodule.range_map_nonempty π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] (N : Submodule R M) : (Set.range fun Ο => Submodule.map Ο N).Nonempty - Submodule.mem_map_of_mem π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} {p : Submodule R M} {r : M} (h : r β p) : f r β Submodule.map f p - Submodule.le_comap_map π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (p : Submodule R M) : p β€ Submodule.comap f (Submodule.map f p) - Submodule.map_comap_le π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (q : Submodule Rβ Mβ) : Submodule.map f (Submodule.comap f q) β€ q - Submodule.mem_map π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} {p : Submodule R M} {x : Mβ} : x β Submodule.map f p β β y β p, f y = x - Submodule.comap_iInf_map_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) {ΞΉ : Sort u_10} (S : ΞΉ β Submodule R M) : Submodule.comap f (β¨ i, Submodule.map f (S i)) = iInf S - Submodule.map_iInf_comap_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) {ΞΉ : Sort u_10} (S : ΞΉ β Submodule Rβ Mβ) : Submodule.map f (β¨ i, Submodule.comap f (S i)) = iInf S - Submodule.map_strictMono_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) : StrictMono (Submodule.map f) - Submodule.map_iInf π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {ΞΉ : Type u_10} [Nonempty ΞΉ] {p : ΞΉ β Submodule R M} (f : F) (hf : Function.Injective βf) : Submodule.map f (β¨ i, p i) = β¨ i, Submodule.map f (p i) - Submodule.map_zero π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} (p : Submodule R M) [RingHomSurjective Οββ] : Submodule.map 0 p = β₯ - Submodule.map_coe_toLinearMap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule R M) : Submodule.map (βf) p = Submodule.map f p - Submodule.map_inf_eq_map_inf_comap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {p : Submodule R M} {p' : Submodule Rβ Mβ} : Submodule.map f p β p' = Submodule.map f (p β Submodule.comap f p') - Submodule.gc_map_comap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) : GaloisConnection (Submodule.map f) (Submodule.comap f) - Submodule.apply_coe_mem_map π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) {p : Submodule R M} (r : β₯p) : f βr β Submodule.map f p - Submodule.map_inf_comap_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) (p q : Submodule Rβ Mβ) : Submodule.map f (Submodule.comap f p β Submodule.comap f q) = p β q - Submodule.comap_inf_map_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) (p q : Submodule R M) : Submodule.comap f (Submodule.map f p β Submodule.map f q) = p β q - Submodule.gciMapComap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) : GaloisCoinsertion (Submodule.map f) (Submodule.comap f) - Submodule.giMapComap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) : GaloisInsertion (Submodule.map f) (Submodule.comap f) - Submodule.map_inf π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) {p q : Submodule R M} (hf : Function.Injective βf) : Submodule.map f (p β q) = Submodule.map f p β Submodule.map f q - Submodule.map_iSup π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {ΞΉ : Sort u_10} (f : F) (p : ΞΉ β Submodule R M) : Submodule.map f (β¨ i, p i) = β¨ i, Submodule.map f (p i) - Submodule.comap_iSup_map_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) {ΞΉ : Sort u_10} (S : ΞΉ β Submodule R M) : Submodule.comap f (β¨ i, Submodule.map f (S i)) = iSup S - Submodule.map_iSup_comap_of_sujective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) {ΞΉ : Sort u_10} (S : ΞΉ β Submodule Rβ Mβ) : Submodule.map f (β¨ i, Submodule.comap f (S i)) = iSup S - Submodule.map_le_iff_le_comap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {p : Submodule R M} {q : Submodule Rβ Mβ} : Submodule.map f p β€ q β p β€ Submodule.comap f q - Submodule.map_mono π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} {p p' : Submodule R M} : p β€ p' β Submodule.map f p β€ Submodule.map f p' - Submodule.map_inf_le π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) {p q : Submodule R M} : Submodule.map f (p β q) β€ Submodule.map f p β Submodule.map f q - Submodule.comap_lt_of_lt_map_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) {p : Submodule R M} {q : Submodule Rβ Mβ} (h : q < Submodule.map f p) : Submodule.comap f q < p - Submodule.le_map_of_comap_le_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} {q : Submodule Rβ Mβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) (h : Submodule.comap f q β€ p) : q β€ Submodule.map f p - Submodule.lt_map_of_comap_lt_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {p : Submodule R M} {q : Submodule Rβ Mβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) (h : Submodule.comap f q < p) : q < Submodule.map f p - Submodule.map_covBy_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) {p q : Submodule R M} (h : p β q) : Submodule.map f p β Submodule.map f q - Submodule.map_le_map_iff_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) (p q : Submodule R M) : Submodule.map f p β€ Submodule.map f q β p β€ q - Submodule.map_lt_map_iff_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) {p q : Submodule R M} : Submodule.map f p < Submodule.map f q β p < q - Submodule.map_sup π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} (p p' : Submodule R M) {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) : Submodule.map f (p β p') = Submodule.map f p β Submodule.map f p' - Submodule.map_sup_comap_of_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Surjective βf) (p q : Submodule Rβ Mβ) : Submodule.map f (Submodule.comap f p β Submodule.comap f q) = p β q - Submodule.comap_sup_map_of_injective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} (hf : Function.Injective βf) (p q : Submodule R M) : Submodule.comap f (Submodule.map f p β Submodule.map f q) = p β q - LinearEquiv.map_eq_comap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) {p : Submodule R M} : Submodule.map (βe) p = Submodule.comap (βe.symm) p - Submodule.comap_equiv_eq_map_symm π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (K : Submodule Rβ Mβ) : Submodule.comap (βe) K = Submodule.map (βe.symm) K - Submodule.map_equiv_eq_comap_symm π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (K : Submodule R M) : Submodule.map (βe) K = Submodule.comap (βe.symm) K - Submodule.equivMapOfInjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (i : Function.Injective βf) (p : Submodule R M) : β₯p βββ[Οββ] β₯(Submodule.map f p) - Submodule.mem_map_equiv π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (p : Submodule R M) {e : M βββ[Οββ] Mβ} {x : Mβ} : x β Submodule.map (βe) p β e.symm x β p - Submodule.map_toAddSubmonoid' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) (p : Submodule R M) : (Submodule.map f p).toAddSubmonoid = AddSubmonoid.map f p.toAddSubmonoid - Submodule.map_comp π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {Rβ : Type u_4} {M : Type u_5} {Mβ : Type u_7} {Mβ : Type u_8} [Semiring R] [Semiring Rβ] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : R β+* Rβ} [RingHomCompTriple Οββ Οββ Οββ] [RingHomSurjective Οββ] [RingHomSurjective Οββ] [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) (p : Submodule R M) : Submodule.map (g βββ f) p = Submodule.map g (Submodule.map f p) - LinearMap.submoduleMap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : β₯p ββ[R] β₯(Submodule.map f p) - Submodule.map_toAddSubmonoid π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) (p : Submodule R M) : (Submodule.map f p).toAddSubmonoid = AddSubmonoid.map (βf) p.toAddSubmonoid - Submodule.map_neg π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_7} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) [AddCommGroup Mβ] [Module R Mβ] (f : M ββ[R] Mβ) : Submodule.map (-f) p = Submodule.map f p - Submodule.map_add_le π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} (p : Submodule R M) [RingHomSurjective Οββ] (f g : M βββ[Οββ] Mβ) : Submodule.map (f + g) p β€ Submodule.map f p β Submodule.map g p - Submodule.map_symm_eq_iff π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] {p : Submodule R M} (e : M βββ[Οββ] Mβ) {K : Submodule Rβ Mβ} : Submodule.map e.symm K = p β Submodule.map e p = K - Submodule.orderIsoMapComap_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [EquivLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule R M) : (Submodule.orderIsoMapComap f) p = Submodule.map f p - LinearEquiv.submoduleMap π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) (p : Submodule R M) : β₯p βββ[Οββ] β₯(Submodule.map (βe) p) - Submodule.orderIsoMapComapOfBijective_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (hf : Function.Bijective βf) (p : Submodule R M) : (Submodule.orderIsoMapComapOfBijective f hf) p = Submodule.map f p - Submodule.map_comap_subtype π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p p' : Submodule R M) : Submodule.map p.subtype (Submodule.comap p.subtype p') = p β p' - Submodule.map_smul π Mathlib.Algebra.Module.Submodule.Map
{K : Type u_9} {V : Type u_10} {Vβ : Type u_11} [Semifield K] [AddCommMonoid V] [Module K V] [AddCommMonoid Vβ] [Module K Vβ] (f : V ββ[K] Vβ) (p : Submodule K V) (a : K) (h : a β 0) : Submodule.map (a β’ f) p = Submodule.map f p - Submodule.map_toAddSubgroup π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_7} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : (Submodule.map f p).toAddSubgroup = AddSubgroup.map (βf) p.toAddSubgroup - Submodule.map_smul' π Mathlib.Algebra.Module.Submodule.Map
{K : Type u_9} {V : Type u_10} {Vβ : Type u_11} [Semifield K] [AddCommMonoid V] [Module K V] [AddCommMonoid Vβ] [Module K Vβ] (f : V ββ[K] Vβ) (p : Submodule K V) (a : K) : Submodule.map (a β’ f) p = β¨ (_ : a β 0), Submodule.map f p - Submodule.orderIsoMapComap_symm_apply' π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] (e : M βββ[Οββ] Mβ) (p : Submodule Rβ Mβ) : (Submodule.orderIsoMapComap e).symm p = Submodule.map e.symm p - LinearMap.comap_codRestrict π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] [AddCommMonoid Mβ] [Module Rβ Mβ] {Οββ : Rβ β+* R} (p : Submodule R M) (f : Mβ βββ[Οββ] M) (hf : β (c : Mβ), f c β p) (p' : Submodule R β₯p) : Submodule.comap (LinearMap.codRestrict p f hf) p' = Submodule.comap f (Submodule.map p.subtype p') - LinearMap.map_codRestrict π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] [AddCommMonoid Mβ] [Module Rβ Mβ] {Οββ : Rβ β+* R} [RingHomSurjective Οββ] (p : Submodule R M) (f : Mβ βββ[Οββ] M) (h : β (c : Mβ), f c β p) (p' : Submodule Rβ Mβ) : Submodule.map (LinearMap.codRestrict p f h) p' = Submodule.comap p.subtype (Submodule.map f p') - AddMonoidHom.coe_toIntLinearMap_map π Mathlib.Algebra.Module.Submodule.Map
{A : Type u_10} {Aβ : Type u_11} [AddCommGroup A] [AddCommGroup Aβ] (f : A β+ Aβ) (s : AddSubgroup A) : Submodule.map f.toIntLinearMap (AddSubgroup.toIntSubmodule s) = AddSubgroup.toIntSubmodule (AddSubgroup.map f s) - Submodule.coe_equivMapOfInjective_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (i : Function.Injective βf) (p : Submodule R M) (x : β₯p) : β((Submodule.equivMapOfInjective f i p) x) = f βx - LinearMap.submoduleMap_surjective π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : Function.Surjective β(f.submoduleMap p) - LinearMap.submoduleMap_coe_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (f : M ββ[R] Mβ) {p : Submodule R M} (x : β₯p) : β((f.submoduleMap p) x) = f βx - Submodule.map_equivMapOfInjective_symm_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} [RingHomInvPair Οββ Οββ] [RingHomInvPair Οββ Οββ] {F : Type u_9} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (i : Function.Injective βf) (p : Submodule R M) (x : β₯(Submodule.map f p)) : f β((Submodule.equivMapOfInjective f i p).symm x) = βx - LinearEquiv.submoduleMap_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) (p : Submodule R M) (x : β₯p) : β((e.submoduleMap p) x) = e βx - LinearEquiv.submoduleMap_symm_apply π Mathlib.Algebra.Module.Submodule.Map
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) (p : Submodule R M) (x : β₯(Submodule.map (βe) p)) : β((e.submoduleMap p).symm x) = e.symm βx - LinearMap.le_ker_iff_map π Mathlib.Algebra.Module.Submodule.Ker
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_11} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {p : Submodule R M} : p β€ LinearMap.ker f β Submodule.map f p = β₯ - LinearMap.range_eq_map π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) : LinearMap.range f = Submodule.map f β€ - Submodule.map_top π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) : Submodule.map f β€ = LinearMap.range f - Submodule.map_comap_eq π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (q : Submodule Rβ Mβ) : Submodule.map f (Submodule.comap f q) = LinearMap.range f β q - LinearMap.map_le_range π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {p : Submodule R M} : Submodule.map f p β€ LinearMap.range f - Submodule.map_comap_eq_of_le π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {p : Submodule Rβ Mβ} (h : p β€ LinearMap.range f) : Submodule.map f (Submodule.comap f p) = p - Submodule.map_comap_eq_self π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} {F : Type u_10} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] {f : F} {q : Submodule Rβ Mβ} (h : q β€ LinearMap.range f) : Submodule.map f (Submodule.comap f q) = q - LinearMap.range_comp π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_6} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : R β+* Rβ} [RingHomCompTriple Οββ Οββ Οββ] [RingHomSurjective Οββ] [RingHomSurjective Οββ] [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) (g : Mβ βββ[Οββ] Mβ) : LinearMap.range (g βββ f) = Submodule.map g (LinearMap.range f) - Submodule.map_subtype_le π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (p' : Submodule R β₯p) : Submodule.map p.subtype p' β€ p - Submodule.map_subtype_top π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.map p.subtype β€ = p - LinearMap.range_domRestrict π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (K : Submodule R M) (f : M ββ[R] Mβ) : LinearMap.range (f.domRestrict K) = Submodule.map f K - LinearMap.submoduleImage.eq_1 π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Type u_10} [AddCommMonoid M'] [Module R M'] {O : Submodule R M} (Ο : β₯O ββ[R] M') (N : Submodule R M) : Ο.submoduleImage N = Submodule.map Ο (Submodule.comap O.subtype N) - Submodule.restrictScalars_map π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {Rβ : Type u_2} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module Rβ Mβ] [SMul R Rβ] [Module Rβ M] [Module R Mβ] [IsScalarTower R Rβ M] [IsScalarTower R Rβ Mβ] (f : M ββ[Rβ] Mβ) (M' : Submodule Rβ M) : Submodule.restrictScalars R (Submodule.map f M') = Submodule.map (βR f) (Submodule.restrictScalars R M') - Submodule.map_subtype_range_inclusion π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p p' : Submodule R M} (h : p β€ p') : Submodule.map p'.subtype (LinearMap.range (Submodule.inclusion h)) = p - Submodule.map_subtype_embedding_eq π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (p' : Submodule R β₯p) : (Submodule.MapSubtype.orderEmbedding p) p' = Submodule.map p.subtype p' - Submodule.coe_mapIic_apply π Mathlib.Algebra.Module.Submodule.Range
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (q : Submodule R β₯p) : β(p.mapIic q) = Submodule.map p.subtype q - LinearEquiv.ofSubmodules π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) (p : Submodule R M) (q : Submodule Rβ Mβ) (h : Submodule.map (βe) p = q) : β₯p βββ[Οββ] β₯q - LinearEquiv.ofSubmodules_apply π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) {p : Submodule R M} {q : Submodule Rβ Mβ} (h : Submodule.map e p = q) (x : β₯p) : β((e.ofSubmodules p q h) x) = e βx - LinearEquiv.ofSubmodules_symm_apply π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {Rβ : Type u_3} {M : Type u_5} {Mβ : Type u_7} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [AddCommMonoid Mβ] {module_M : Module R M} {module_Mβ : Module Rβ Mβ} {Οββ : R β+* Rβ} {Οββ : Rβ β+* R} {reββ : RingHomInvPair Οββ Οββ} {reββ : RingHomInvPair Οββ Οββ} (e : M βββ[Οββ] Mβ) {p : Submodule R M} {q : Submodule Rβ Mβ} (h : Submodule.map e p = q) (x : β₯q) : β((e.ofSubmodules p q h).symm x) = e.symm βx - Submodule.equivSubtypeMap π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (q : Submodule R β₯p) : β₯q ββ[R] β₯(Submodule.map p.subtype q) - Submodule.equivSubtypeMap_apply π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p : Submodule R M} {q : Submodule R β₯p} (x : β₯q) : β((p.equivSubtypeMap q) x) = (p.subtype.domRestrict q) x - Submodule.equivSubtypeMap_symm_apply π Mathlib.Algebra.Module.Submodule.Equiv
{R : Type u_1} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] {p : Submodule R M} {q : Submodule R β₯p} (x : β₯(Submodule.map p.subtype q)) : ββ((p.equivSubtypeMap q).symm x) = βx - LinearMap.map_span π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (s : Set M) : Submodule.map f (Submodule.span R s) = Submodule.span Rβ (βf '' s) - Submodule.map_span π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (s : Set M) : Submodule.map f (Submodule.span R s) = Submodule.span Rβ (βf '' s) - Submodule.span_image π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {s : Set M} [RingHomSurjective Οββ] (f : F) : Submodule.span Rβ (βf '' s) = Submodule.map f (Submodule.span R s) - LinearMap.map_injective π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [AddCommGroup Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} (hf : LinearMap.ker f = β₯) : Function.Injective (Submodule.map f) - Submodule.span_image' π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {s : Set M} [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) : Submodule.span Rβ (βf '' s) = Submodule.map f (Submodule.span R s) - LinearMap.map_span_le π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (s : Set M) (N : Submodule Rβ Mβ) : Submodule.map f (Submodule.span R s) β€ N β β m β s, f m β N - Submodule.map_span_le π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [Semiring Rβ] {Οββ : R β+* Rβ} [AddCommMonoid Mβ] [Module Rβ Mβ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] [RingHomSurjective Οββ] (f : F) (s : Set M) (N : Submodule Rβ Mβ) : Submodule.map f (Submodule.span R s) β€ N β β m β s, f m β N - Submodule.comap_map_eq π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) (p : Submodule R M) : Submodule.comap f (Submodule.map f p) = p β LinearMap.ker f - Submodule.comap_map_eq_self π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} {p : Submodule R M} (h : LinearMap.ker f β€ p) : Submodule.comap f (Submodule.map f p) = p - Submodule.comap_map_sup_of_comap_le π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} {p : Submodule R M} {q : Submodule Rβ Mβ} (le : Submodule.comap f q β€ p) : Submodule.comap f (Submodule.map f p β q) = p - LinearMap.map_eq_top_iff π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [AddCommGroup Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} (hf : LinearMap.range f = β€) {p : Submodule R M} : Submodule.map f p = β€ β p β LinearMap.ker f = β€ - Submodule.map_iInf_of_ker_le π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} (hf : Function.Surjective βf) {ΞΉ : Sort u_9} {p : ΞΉ β Submodule R M} (h : LinearMap.ker f β€ β¨ i, p i) : Submodule.map f (β¨ i, p i) = β¨ i, Submodule.map f (p i) - LinearMap.map_le_map_iff' π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [AddCommGroup Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} (hf : LinearMap.ker f = β₯) {p p' : Submodule R M} : Submodule.map f p β€ Submodule.map f p' β p β€ p' - Submodule.isCoatom_map_of_ker_le π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [Module R M] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] {f : F} (hf : Function.Surjective βf) {p : Submodule R M} (le : LinearMap.ker f β€ p) (hp : IsCoatom p) : IsCoatom (Submodule.map f p) - LinearMap.map_le_map_iff π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {Rβ : Type u_2} {M : Type u_4} {Mβ : Type u_5} [Semiring R] [Semiring Rβ] [AddCommGroup M] [AddCommGroup Mβ] [Module R M] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] {F : Type u_8} [FunLike F M Mβ] [SemilinearMapClass F Οββ M Mβ] (f : F) {p p' : Submodule R M} : Submodule.map f p β€ Submodule.map f p' β p β€ p' β LinearMap.ker f - Submodule.map_subtype_span_singleton π Mathlib.LinearAlgebra.Span.Basic
{R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {p : Submodule R M} (x : β₯p) : Submodule.map p.subtype (Submodule.span R {x}) = Submodule.span R {βx} - Submodule.mapβ_span_singleton_eq_map π Mathlib.Algebra.Module.Submodule.Bilinear
{R : Type u_1} {M : Type u_2} {N : Type u_3} {P : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M ββ[R] N ββ[R] P) (m : M) : Submodule.mapβ f (Submodule.span R {m}) = Submodule.map (f m) - Submodule.mapβ_span_singleton_eq_map_flip π Mathlib.Algebra.Module.Submodule.Bilinear
{R : Type u_1} {M : Type u_2} {N : Type u_3} {P : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : M ββ[R] N ββ[R] P) (s : Submodule R M) (n : N) : Submodule.mapβ f s (Submodule.span R {n}) = Submodule.map (f.flip n) s - NonUnitalSubalgebra.map_toSubmodule π Mathlib.Algebra.Algebra.NonUnitalSubalgebra
{F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} : (NonUnitalSubalgebra.map f S).toSubmodule = Submodule.map (LinearMapClass.linearMap f) S.toSubmodule - Finsupp.lmapDomain_supported π Mathlib.LinearAlgebra.Finsupp.Supported
{Ξ± : Type u_1} (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {Ξ±' : Type u_7} (f : Ξ± β Ξ±') (s : Set Ξ±) : Submodule.map (Finsupp.lmapDomain M R f) (Finsupp.supported M R s) = Finsupp.supported M R (f '' s) - Submodule.set_smul_eq_map π Mathlib.Algebra.Module.Submodule.Pointwise
{R : Type u_2} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] (sR : Set R) (N : Submodule R M) [SMulCommClass R R β₯N] : sR β’ N = Submodule.map (N.subtype ββ (Finsupp.lsum R) (DistribMulAction.toLinearMap R β₯N)) (Finsupp.supported (β₯N) R sR) - Submodule.map_one π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] {A' : Type u_1} [Semiring A'] [Algebra R A'] (f : A ββ[R] A') : Submodule.map f.toLinearMap 1 = 1 - Submodule.map_op_one π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] : Submodule.map (β(MulOpposite.opLinearEquiv R)) 1 = 1 - Submodule.mapHom_apply π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] {A' : Type u_1} [Semiring A'] [Algebra R A'] (f : A ββ[R] A') (p : Submodule R A) : (Submodule.mapHom f) p = Submodule.map f.toLinearMap p - Submodule.map_unop_one π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] : Submodule.map (β(MulOpposite.opLinearEquiv R).symm) 1 = 1 - Submodule.map_pow π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (M : Submodule R A) {A' : Type u_1} [Semiring A'] [Algebra R A'] (f : A ββ[R] A') (n : β) : Submodule.map f.toLinearMap (M ^ n) = Submodule.map f.toLinearMap M ^ n - Submodule.map_mul π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (M N : Submodule R A) {A' : Type u_1} [Semiring A'] [Algebra R A'] (f : A ββ[R] A') : Submodule.map f.toLinearMap (M * N) = Submodule.map f.toLinearMap M * Submodule.map f.toLinearMap N - Submodule.map_div π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [CommSemiring A] [Algebra R A] {B : Type u_1} [CommSemiring B] [Algebra R B] (I J : Submodule R A) (h : A ββ[R] B) : Submodule.map h.toLinearMap (I / J) = Submodule.map h.toLinearMap I / Submodule.map h.toLinearMap J - Submodule.singleton_smul π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [CommSemiring A] [Algebra R A] (a : A) (M : Submodule R A) : Set.up {a} β’ M = Submodule.map (LinearMap.mulLeft R a) M - Submodule.map_op_pow π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (M : Submodule R A) (n : β) : Submodule.map (β(MulOpposite.opLinearEquiv R)) (M ^ n) = Submodule.map (β(MulOpposite.opLinearEquiv R)) M ^ n - Submodule.map_unop_pow π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (n : β) (M : Submodule R Aα΅α΅α΅) : Submodule.map (β(MulOpposite.opLinearEquiv R).symm) (M ^ n) = Submodule.map (β(MulOpposite.opLinearEquiv R).symm) M ^ n - Submodule.map_op_mul π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (M N : Submodule R A) : Submodule.map (β(MulOpposite.opLinearEquiv R)) (M * N) = Submodule.map (β(MulOpposite.opLinearEquiv R)) N * Submodule.map (β(MulOpposite.opLinearEquiv R)) M - Submodule.map_unop_mul π Mathlib.Algebra.Algebra.Operations
{R : Type u} [CommSemiring R] {A : Type v} [Semiring A] [Algebra R A] (M N : Submodule R Aα΅α΅α΅) : Submodule.map (β(MulOpposite.opLinearEquiv R).symm) (M * N) = Submodule.map (β(MulOpposite.opLinearEquiv R).symm) N * Submodule.map (β(MulOpposite.opLinearEquiv R).symm) M - Submodule.span_algebraMap_image π Mathlib.Algebra.Algebra.Tower
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (a : Set R) : Submodule.span R (β(algebraMap R S) '' a) = Submodule.map (Algebra.linearMap R S) (Submodule.span R a) - Submodule.span_algebraMap_image_of_tower π Mathlib.Algebra.Algebra.Tower
{R : Type u} [CommSemiring R] {S : Type u_1} {T : Type u_2} [CommSemiring S] [Semiring T] [Module R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (a : Set S) : Submodule.span R (β(algebraMap S T) '' a) = Submodule.map (βR (Algebra.linearMap S T)) (Submodule.span R a) - Subalgebra.map_toSubmodule π Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] {S : Subalgebra R A} {f : A ββ[R] B} : Subalgebra.toSubmodule (Subalgebra.map f S) = Submodule.map f.toLinearMap (Subalgebra.toSubmodule S) - Finsupp.span_image_eq_map_linearCombination π Mathlib.LinearAlgebra.Finsupp.LinearCombination
{Ξ± : Type u_1} {M : Type u_2} (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {v : Ξ± β M} (s : Set Ξ±) : Submodule.span R (v '' s) = Submodule.map (Finsupp.linearCombination R v) (Finsupp.supported R R s) - Submodule.map_le_smul_top π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] (I : Ideal R) (f : R ββ[R] M) : Submodule.map f I β€ I β’ β€ - Submodule.map_smul'' π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] (I : Ideal R) (N : Submodule R M) {M' : Type w} [AddCommMonoid M'] [Module R M'] (f : M ββ[R] M') : Submodule.map f (I β’ N) = I β’ Submodule.map f N - Submodule.map_pointwise_smul π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {M : Type v} {M' : Type u_1} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (r : R) (N : Submodule R M) (f : M ββ[R] M') : Submodule.map f (r β’ N) = r β’ Submodule.map f N - Ideal.map_eq_submodule_map π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R β+* S) [h : RingHomSurjective f] (I : Ideal R) : Ideal.map f I = Submodule.map f.toSemilinearMap I - Submodule.fst_map_fst π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] : Submodule.map (LinearMap.fst R M Mβ) (Submodule.fst R M Mβ) = β€ - Submodule.fst_map_snd π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] : Submodule.map (LinearMap.snd R M Mβ) (Submodule.fst R M Mβ) = β₯ - Submodule.snd_map_fst π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] : Submodule.map (LinearMap.fst R M Mβ) (Submodule.snd R M Mβ) = β₯ - Submodule.snd_map_snd π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] : Submodule.map (LinearMap.snd R M Mβ) (Submodule.snd R M Mβ) = β€ - Submodule.prod_map_fst π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (p : Submodule R M) (q : Submodule R Mβ) : Submodule.map (LinearMap.fst R M Mβ) (p.prod q) = p - Submodule.prod_map_snd π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (p : Submodule R M) (q : Submodule R Mβ) : Submodule.map (LinearMap.snd R M Mβ) (p.prod q) = q - Submodule.map_inl π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (p : Submodule R M) : Submodule.map (LinearMap.inl R M Mβ) p = p.prod β₯ - Submodule.map_inr π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (q : Submodule R Mβ) : Submodule.map (LinearMap.inr R M Mβ) q = β₯.prod q - LinearMap.coprod_map_prod π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} {Mβ : Type y} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (g : Mβ ββ[R] Mβ) (S : Submodule R M) (S' : Submodule R Mβ) : Submodule.map (f.coprod g) (S.prod S') = Submodule.map f S β Submodule.map g S' - LinearMap.map_coprod_prod π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} {Mβ : Type y} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (g : Mβ ββ[R] Mβ) (p : Submodule R M) (q : Submodule R Mβ) : Submodule.map (f.coprod g) (p.prod q) = Submodule.map f p β Submodule.map g q - LinearMap.prod_eq_sup_map π Mathlib.LinearAlgebra.Prod
{R : Type u} {M : Type v} {Mβ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] (p : Submodule R M) (q : Submodule R Mβ) : p.prod q = Submodule.map (LinearMap.inl R M Mβ) p β Submodule.map (LinearMap.inr R M Mβ) q - Submodule.le_prod_iff π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] {pβ : Submodule R M} {pβ : Submodule R Mβ} {q : Submodule R (M Γ Mβ)} : q β€ pβ.prod pβ β Submodule.map (LinearMap.fst R M Mβ) q β€ pβ β§ Submodule.map (LinearMap.snd R M Mβ) q β€ pβ - Submodule.prod_le_iff π Mathlib.LinearAlgebra.Prod
(R : Type u) (M : Type v) (Mβ : Type w) [Semiring R] [AddCommMonoid M] [AddCommMonoid Mβ] [Module R M] [Module R Mβ] {pβ : Submodule R M} {pβ : Submodule R Mβ} {q : Submodule R (M Γ Mβ)} : pβ.prod pβ β€ q β Submodule.map (LinearMap.inl R M Mβ) pβ β€ q β§ Submodule.map (LinearMap.inr R M Mβ) pβ β€ q - Submodule.iSup_map_single π Mathlib.LinearAlgebra.Pi
{R : Type u} {ΞΉ : Type x} [Semiring R] {Ο : ΞΉ β Type u_1} [(i : ΞΉ) β AddCommMonoid (Ο i)] [(i : ΞΉ) β Module R (Ο i)] {p : (i : ΞΉ) β Submodule R (Ο i)} [DecidableEq ΞΉ] [Finite ΞΉ] : β¨ i, Submodule.map (LinearMap.single R Ο i) (p i) = Submodule.pi Set.univ p - Submodule.iSup_map_single_le π Mathlib.LinearAlgebra.Pi
{R : Type u} {ΞΉ : Type x} [Semiring R] {Ο : ΞΉ β Type u_1} [(i : ΞΉ) β AddCommMonoid (Ο i)] [(i : ΞΉ) β Module R (Ο i)] {I : Set ΞΉ} {p : (i : ΞΉ) β Submodule R (Ο i)} [DecidableEq ΞΉ] : β¨ i, Submodule.map (LinearMap.single R Ο i) (p i) β€ Submodule.pi I p - Submodule.baseChange.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type u_1} {M : Type u_2} (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] (p : Submodule R M) : Submodule.baseChange A p = Submodule.span A β(Submodule.map ((TensorProduct.mk R A M) 1) p) - Submodule.map_range_rTensor_subtype_lid π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {Q : Type u_2} [CommSemiring R] [AddCommMonoid Q] [Module R Q] {I : Submodule R R} : Submodule.map (TensorProduct.lid R Q) (LinearMap.range (LinearMap.rTensor Q I.subtype)) = I β’ β€ - rank_map_le π Mathlib.LinearAlgebra.Dimension.Basic
{R : Type u} {M Mβ : Type v} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : Module.rank R β₯(Submodule.map f p) β€ Module.rank R β₯p - lift_rank_map_le π Mathlib.LinearAlgebra.Dimension.Basic
{R : Type u} {M : Type v} {M' : Type v'} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (f : M ββ[R] M') (p : Submodule R M) : Cardinal.lift.{v, v'} (Module.rank R β₯(Submodule.map f p)) β€ Cardinal.lift.{v', v} (Module.rank R β₯p) - LinearEquiv.rank_map_eq π Mathlib.LinearAlgebra.Dimension.Basic
{R : Type u} {M Mβ : Type v} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module R Mβ] (f : M ββ[R] Mβ) (p : Submodule R M) : Module.rank R β₯(Submodule.map (βf) p) = Module.rank R β₯p - LinearEquiv.lift_rank_map_eq π Mathlib.LinearAlgebra.Dimension.Basic
{R : Type u} {M : Type v} {M' : Type v'} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (f : M ββ[R] M') (p : Submodule R M) : Cardinal.lift.{v, v'} (Module.rank R β₯(Submodule.map (βf) p)) = Cardinal.lift.{v', v} (Module.rank R β₯p) - LinearEquiv.finrank_map_eq π Mathlib.LinearAlgebra.Dimension.Finrank
{R : Type u} {M : Type v} {N : Type w} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M ββ[R] N) (p : Submodule R M) : Module.finrank R β₯(Submodule.map (βf) p) = Module.finrank R β₯p - Submodule.finrank_map_subtype_eq π Mathlib.LinearAlgebra.Dimension.Finrank
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Module R M] (p : Submodule R M) (q : Submodule R β₯p) : Module.finrank R β₯(Submodule.map p.subtype q) = Module.finrank R β₯q - LinearMap.iterateMapComap.eq_1 π Mathlib.Algebra.Module.Submodule.IterateMapComap
{R : Type u_1} {N : Type u_2} {M : Type u_3} [Semiring R] [AddCommMonoid N] [Module R N] [AddCommMonoid M] [Module R M] (f i : N ββ[R] M) (n : β) : f.iterateMapComap i n = (fun K => Submodule.comap f (Submodule.map i K))^[n] - LinearMap.iterateMapComap_le_succ π Mathlib.Algebra.Module.Submodule.IterateMapComap
{R : Type u_1} {N : Type u_2} {M : Type u_3} [Semiring R] [AddCommMonoid N] [Module R N] [AddCommMonoid M] [Module R M] (f i : N ββ[R] M) (K : Submodule R N) (h : Submodule.map f K β€ Submodule.map i K) (n : β) : f.iterateMapComap i n K β€ f.iterateMapComap i (n + 1) K - Submodule.mkQ_map_self π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : Submodule.map p.mkQ p = β₯ - Submodule.Quotient.equiv π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ββ[R] N) (hf : Submodule.map f P = Q) : (M β§Έ P) ββ[R] N β§Έ Q - Submodule.map_mkQ_eq_top π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p p' : Submodule R M) : Submodule.map p.mkQ p' = β€ β p β p' = β€ - Submodule.comap_map_mkQ π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p p' : Submodule R M) : Submodule.comap p.mkQ (Submodule.map p.mkQ p') = p β p' - Submodule.Quotient.equiv_refl π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (P Q : Submodule R M) (hf : Submodule.map (β(LinearEquiv.refl R M)) P = Q) : Submodule.Quotient.equiv P Q (LinearEquiv.refl R M) hf = P.quotEquivOfEq Q β― - Submodule.ker_liftQ π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {Rβ : Type u_3} {Mβ : Type u_4} [Ring Rβ] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} (f : M βββ[Οββ] Mβ) (h : p β€ LinearMap.ker f) : LinearMap.ker (p.liftQ f h) = Submodule.map p.mkQ (LinearMap.ker f) - Submodule.comap_liftQ π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {Rβ : Type u_3} {Mβ : Type u_4} [Ring Rβ] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} (q : Submodule Rβ Mβ) (f : M βββ[Οββ] Mβ) (h : p β€ LinearMap.ker f) : Submodule.comap (p.liftQ f h) q = Submodule.map p.mkQ (Submodule.comap f q) - Submodule.map_liftQ π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) {Rβ : Type u_3} {Mβ : Type u_4} [Ring Rβ] [AddCommGroup Mβ] [Module Rβ Mβ] {Οββ : R β+* Rβ} [RingHomSurjective Οββ] (f : M βββ[Οββ] Mβ) (h : p β€ LinearMap.ker f) (q : Submodule R (M β§Έ p)) : Submodule.map (p.liftQ f h) q = Submodule.map f (Submodule.comap p.mkQ q) - Submodule.Quotient.equiv_apply π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ββ[R] N) (hf : Submodule.map f P = Q) (a : M β§Έ P) : (Submodule.Quotient.equiv P Q f hf) a = (P.mapQ Q βf β―) a - Submodule.Quotient.equiv_symm_apply π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ββ[R] N) (hf : Submodule.map f P = Q) (a : N β§Έ Q) : (Submodule.Quotient.equiv P Q f hf).symm a = (Q.mapQ P βf.symm β―) a - Submodule.strictMono_comap_prod_map π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] (p : Submodule R M) : StrictMono fun m => (Submodule.comap p.subtype m, Submodule.map p.mkQ m) - Submodule.Quotient.equiv_symm π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_5} {M : Type u_6} {N : Type u_7} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : Submodule R M) (Q : Submodule R N) (f : M ββ[R] N) (hf : Submodule.map f P = Q) : (Submodule.Quotient.equiv P Q f hf).symm = Submodule.Quotient.equiv Q P f.symm β― - Submodule.Quotient.equiv_trans π Mathlib.LinearAlgebra.Quotient.Basic
{R : Type u_1} {M : Type u_2} [Ring R] [AddCommGroup M] [Module R M] {N : Type u_5} {O : Type u_6} [AddCommGroup N] [Module R N] [AddCommGroup O] [Module R O] (P : Submodule R M) (Q : Submodule R N) (S : Submodule R O) (e : M ββ[R] N) (f : N ββ[R] O) (he : Submodule.map e P = Q) (hf : Submodule.map f Q = S) (hef : Submodule.map (e βͺβ«β f) P = S) : Submodule.Quotient.equiv P S (e βͺβ«β f) hef = Submodule.Quotient.equiv P Q e he βͺβ«β Submodule.Quotient.equiv Q S f hf - Submodule.FG.map π Mathlib.RingTheory.Finiteness.Basic
{R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_3} {P : Type u_4} [Semiring S] [AddCommMonoid P] [Module S P] {Ο : R β+* S} [RingHomSurjective Ο] (f : M βββ[Ο] P) {N : Submodule R M} (hs : N.FG) : (Submodule.map f N).FG - Submodule.fg_of_fg_map_injective π Mathlib.RingTheory.Finiteness.Basic
{R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {S : Type u_3} {P : Type u_4} [Semiring S] [AddCommMonoid P] [Module S P] {Ο : R β+* S} [RingHomSurjective Ο] (f : M βββ[Ο] P) (hf : Function.Injective βf) {N : Submodule R M} (hfn : (Submodule.map f N).FG) : N.FG - Submodule.fg_of_fg_map π Mathlib.RingTheory.Finiteness.Basic
{R : Type u_4} {M : Type u_5} {P : Type u_6} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup P] [Module R P] (f : M ββ[R] P) (hf : LinearMap.ker f = β₯) {N : Submodule R M} (hfn : (Submodule.map f N).FG) : N.FG - Module.Finite.map π Mathlib.RingTheory.Finiteness.Basic
{R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (p : Submodule R M) [Module.Finite R β₯p] (f : M ββ[R] N) : Module.Finite R β₯(Submodule.map f p) - Submodule.fg_of_fg_map_of_fg_inf_ker π Mathlib.RingTheory.Finiteness.Finsupp
{R : Type u_1} {M : Type u_2} {P : Type u_4} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup P] [Module R P] (f : M ββ[R] P) {s : Submodule R M} (hs1 : (Submodule.map f s).FG) (hs2 : (s β LinearMap.ker f).FG) : s.FG - Submodule.IsPrincipal.map π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} {M : Type v} {N : Type u_2} [Ring R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (f : M ββ[R] N) {S : Submodule R M} (hI : S.IsPrincipal) : (Submodule.map f S).IsPrincipal - Submodule.IsPrincipal.generator_map_dvd_of_mem π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} {M : Type v} [AddCommMonoid M] [CommRing R] [Module R M] {N : Submodule R M} (Ο : M ββ[R] R) [(Submodule.map Ο N).IsPrincipal] {x : M} (hx : x β N) : Submodule.IsPrincipal.generator (Submodule.map Ο N) β£ Ο x - Submodule.finrank_map_le π Mathlib.LinearAlgebra.Dimension.Constructions
{R : Type u} {M : Type v} {M' : Type v'} [Semiring R] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [StrongRankCondition R] [Module R M'] (f : M ββ[R] M') (p : Submodule R M) [Module.Finite R β₯p] : Module.finrank R β₯(Submodule.map f p) β€ Module.finrank R β₯p - LinearPMap.graph_map_fst_eq_domain π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (f : E ββ.[R] F) : Submodule.map (LinearMap.fst R E F) f.graph = f.domain - Submodule.toLinearPMap_domain π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (g : Submodule R (E Γ F)) : g.toLinearPMap.domain = Submodule.map (LinearMap.fst R E F) g - LinearPMap.inverse.eq_1 π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (f : E ββ.[R] F) : f.inverse = (Submodule.map (LinearEquiv.prodComm R E F) f.graph).toLinearPMap - Submodule.valFromGraph π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {g : Submodule R (E Γ F)} (hg : β x β g, x.1 = 0 β x.2 = 0) {a : E} (ha : a β Submodule.map (LinearMap.fst R E F) g) : F - LinearPMap.neg_graph π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (f : E ββ.[R] F) : (-f).graph = Submodule.map (LinearMap.id.prodMap (-LinearMap.id)) f.graph - Submodule.existsUnique_from_graph π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {g : Submodule R (E Γ F)} (hg : β {x : E Γ F}, x β g β x.1 = 0 β x.2 = 0) {a : E} (ha : a β Submodule.map (LinearMap.fst R E F) g) : β! b, (a, b) β g - Submodule.valFromGraph_mem π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {g : Submodule R (E Γ F)} (hg : β x β g, x.1 = 0 β x.2 = 0) {a : E} (ha : a β Submodule.map (LinearMap.fst R E F) g) : (a, Submodule.valFromGraph hg ha) β g - LinearPMap.smul_graph π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {M : Type u_5} [Monoid M] [DistribMulAction M F] [SMulCommClass R M F] (f : E ββ.[R] F) (z : M) : (z β’ f).graph = Submodule.map (LinearMap.id.prodMap (z β’ LinearMap.id)) f.graph - LinearPMap.graph_map_snd_eq_range π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (f : E ββ.[R] F) : Submodule.map (LinearMap.snd R E F) f.graph = LinearMap.range f.toFun - Submodule.mem_graph_toLinearPMap π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {g : Submodule R (E Γ F)} (hg : β x β g, x.1 = 0 β x.2 = 0) (x : β₯(Submodule.map (LinearMap.fst R E F) g)) : (βx, βg.toLinearPMap x) β g - Submodule.toLinearPMapAux π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (g : Submodule R (E Γ F)) (hg : β x β g, x.1 = 0 β x.2 = 0) : β₯(Submodule.map (LinearMap.fst R E F) g) ββ[R] F - Submodule.toLinearPMap_apply_aux π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {g : Submodule R (E Γ F)} (hg : β x β g, x.1 = 0 β x.2 = 0) (x : β₯(Submodule.map (LinearMap.fst R E F) g)) : βg.toLinearPMap x = Submodule.valFromGraph hg β― - Submodule.toLinearPMap_range π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (g : Submodule R (E Γ F)) (hg : β x β g, x.1 = 0 β x.2 = 0) : LinearMap.range g.toLinearPMap.toFun = Submodule.map (LinearMap.snd R E F) g - LinearPMap.graph.eq_1 π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] (f : E ββ.[R] F) : f.graph = Submodule.map (f.domain.subtype.prodMap LinearMap.id) f.toFun.graph - LinearPMap.inverse_graph π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {f : E ββ.[R] F} (hf : LinearMap.ker f.toFun = β₯) : f.inverse.graph = Submodule.map (LinearEquiv.prodComm R E F) f.graph - LinearPMap.mem_inverse_graph_snd_eq_zero π Mathlib.LinearAlgebra.LinearPMap
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {f : E ββ.[R] F} (hf : LinearMap.ker f.toFun = β₯) (x : F Γ E) (hv : x β Submodule.map (LinearEquiv.prodComm R E F) f.graph) (hv' : x.1 = 0) : x.2 = 0
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65