Loogle!
Result
Found 160 declarations mentioning Submonoid.map.
- Submonoid.map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid N - Submonoid.map_id π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} [MulOneClass M] (S : Submonoid M) : Submonoid.map (MonoidHom.id M) S = S - Submonoid.map_injective_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : Function.Injective (Submonoid.map f) - Submonoid.map_surjective_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : Function.Surjective (Submonoid.map f) - Submonoid.map_bot π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : Submonoid.map f β₯ = β₯ - MonoidHom.mrange_eq_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : MonoidHom.mrange f = Submonoid.map f β€ - MonoidHom.map_mclosure π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (s : Set M) : Submonoid.map f (Submonoid.closure s) = Submonoid.closure (βf '' s) - Submonoid.comap_map_eq_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S : Submonoid M) : Submonoid.comap f (Submonoid.map f S) = S - Submonoid.map_comap_eq_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S : Submonoid N) : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (h : Function.Surjective βf) {S : Submonoid N} : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.map.congr_simp π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f fβ : F) (e_f : f = fβ) (S Sβ : Submonoid M) (e_S : S = Sβ) : Submonoid.map f S = Submonoid.map fβ Sβ - Submonoid.coe_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : β(Submonoid.map f S) = βf '' βS - Submonoid.map_comap_eq π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) : Submonoid.map f (Submonoid.comap f S) = S β MonoidHom.mrange f - Submonoid.comap_map_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} : Submonoid.comap f (Submonoid.map f (Submonoid.comap f S)) = Submonoid.comap f S - Submonoid.map_comap_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : Submonoid.map f (Submonoid.comap f (Submonoid.map f S)) = Submonoid.map f S - Submonoid.le_comap_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : S β€ Submonoid.comap f (Submonoid.map f S) - Submonoid.map_comap_le π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} : Submonoid.map f (Submonoid.comap f S) β€ S - Submonoid.monotone_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : Monotone (Submonoid.map f) - MonoidHom.mrange.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : MonoidHom.mrange f = (Submonoid.map f β€).copy (Set.range βf) β― - Submonoid.mem_map_of_mem π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) {S : Submonoid M} {x : M} (hx : x β S) : f x β Submonoid.map f S - Submonoid.gc_map_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : GaloisConnection (Submonoid.map f) (Submonoid.comap f) - Submonoid.map_strictMono_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : StrictMono (Submonoid.map f) - Submonoid.comap_iInf_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Injective βf) (S : ΞΉ β Submonoid M) : Submonoid.comap f (β¨ i, Submonoid.map f (S i)) = iInf S - Submonoid.map_iInf_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Surjective βf) (S : ΞΉ β Submonoid N) : Submonoid.map f (β¨ i, Submonoid.comap f (S i)) = iInf S - Submonoid.map_iInf π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Sort u_5} [Nonempty ΞΉ] (f : F) (hf : Function.Injective βf) (s : ΞΉ β Submonoid M) : Submonoid.map f (iInf s) = β¨ i, Submonoid.map f (s i) - Submonoid.mem_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {y : N} : y β Submonoid.map f S β β x β S, f x = y - Submonoid.map_comap_eq_self π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid N} (h : S β€ MonoidHom.mrange f) : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.mem_map_iff_mem π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) {S : Submonoid M} {x : M} : f x β Submonoid.map f S β x β S - Submonoid.map_coe_toMonoidHom π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid.map (βf) S = Submonoid.map f S - Submonoid.map_iSup π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Sort u_5} (f : F) (s : ΞΉ β Submonoid M) : Submonoid.map f (iSup s) = β¨ i, Submonoid.map f (s i) - Submonoid.comap_inf_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S T : Submonoid M) : Submonoid.comap f (Submonoid.map f S β Submonoid.map f T) = S β T - Submonoid.gciMapComap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : GaloisCoinsertion (Submonoid.map f) (Submonoid.comap f) - Submonoid.giMapComap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : GaloisInsertion (Submonoid.map f) (Submonoid.comap f) - Submonoid.map_inf π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) (hf : Function.Injective βf) : Submonoid.map f (S β T) = Submonoid.map f S β Submonoid.map f T - Submonoid.map_inf_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S T : Submonoid N) : Submonoid.map f (Submonoid.comap f S β Submonoid.comap f T) = S β T - Submonoid.map.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid.map f S = { carrier := βf '' βS, mul_mem' := β―, one_mem' := β― } - Submonoid.apply_coe_mem_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) (x : β₯S) : f βx β Submonoid.map f S - Submonoid.comap_iSup_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Injective βf) (S : ΞΉ β Submonoid M) : Submonoid.comap f (β¨ i, Submonoid.map f (S i)) = iSup S - Submonoid.map_iSup_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Surjective βf) (S : ΞΉ β Submonoid N) : Submonoid.map f (β¨ i, Submonoid.comap f (S i)) = iSup S - Submonoid.le_comap_of_map_le π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} : Submonoid.map f S β€ T β S β€ Submonoid.comap f T - Submonoid.map_le_of_le_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} : S β€ Submonoid.comap f T β Submonoid.map f S β€ T - Submonoid.map_le_iff_le_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {T : Submonoid N} : Submonoid.map f S β€ T β S β€ Submonoid.comap f T - Submonoid.map_inl π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) : Submonoid.map (MonoidHom.inl M N) s = s.prod β₯ - Submonoid.map_inr π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid N) : Submonoid.map (MonoidHom.inr M N) s = β₯.prod s - Submonoid.map_sup π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) : Submonoid.map f (S β T) = Submonoid.map f S β Submonoid.map f T - Submonoid.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) {S T : Submonoid M} : Submonoid.map f S β€ Submonoid.map f T β S β€ T - Submonoid.comap_sup_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S T : Submonoid M) : Submonoid.comap f (Submonoid.map f S β Submonoid.map f T) = S β T - Submonoid.map_sup_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S T : Submonoid N) : Submonoid.map f (Submonoid.comap f S β Submonoid.comap f T) = S β T - Submonoid.surjOn_iff_le_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {f : M β* N} {H : Submonoid M} {K : Submonoid N} : Set.SurjOn βf βH βK β K β€ Submonoid.map f H - Submonoid.map_equiv_top π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M β* N) : Submonoid.map f β€ = β€ - MonoidHom.map_mrange π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (g : N β* P) (f : M β* N) : Submonoid.map g (MonoidHom.mrange f) = MonoidHom.mrange (g.comp f) - MonoidHom.mrange_comp π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {O : Type u_5} [MulOneClass O] (f : N β* O) (g : M β* N) : MonoidHom.mrange (f.comp g) = Submonoid.map f (MonoidHom.mrange g) - Submonoid.map_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (S : Submonoid M) (g : N β* P) (f : M β* N) : Submonoid.map g (Submonoid.map f S) = Submonoid.map (g.comp f) S - Submonoid.codisjoint_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) {H K : Submonoid M} (h : Codisjoint H K) : Codisjoint (Submonoid.map f H) (Submonoid.map f K) - Submonoid.disjoint_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) {H K : Submonoid M} (h : Disjoint H K) : Disjoint (Submonoid.map f H) (Submonoid.map f K) - Submonoid.mem_map_equiv π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {f : M β* N} {K : Submonoid M} {x : N} : x β Submonoid.map f.toMonoidHom K β f.symm x β K - Submonoid.equivMapOfInjective π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) : β₯S β* β₯(Submonoid.map f S) - Submonoid.map_coe_toMulEquiv π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_5} [EquivLike F M N] [MulEquivClass F M N] (f : F) (S : Submonoid M) : Submonoid.map (βf) S = Submonoid.map f S - Submonoid.giMapComap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : Submonoid.giMapComap hf = β―.toGaloisInsertion β― - Submonoid.gciMapComap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : Submonoid.gciMapComap hf = β―.toGaloisCoinsertion β― - Submonoid.iSup_map_mulSingle_le π Mathlib.Algebra.Group.Submonoid.Operations
{ΞΉ : Type u_4} {M : ΞΉ β Type u_5} [(i : ΞΉ) β MulOneClass (M i)] [DecidableEq ΞΉ] {I : Set ΞΉ} {S : (i : ΞΉ) β Submonoid (M i)} : β¨ i, Submonoid.map (MonoidHom.mulSingle M i) (S i) β€ Submonoid.pi I S - MonoidHom.submonoidMap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : β₯M' β* β₯(Submonoid.map f M') - Submonoid.comap_equiv_eq_map_symm π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : N β* M) (K : Submonoid M) : Submonoid.comap f K = Submonoid.map f.symm K - Submonoid.map_equiv_eq_comap_symm π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M β* N) (K : Submonoid M) : Submonoid.map f K = Submonoid.comap f.symm K - MulEquiv.submonoidMap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) : β₯S β* β₯(Submonoid.map e S) - MonoidHom.restrict_mrange π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (f : M β* N) : MonoidHom.mrange (f.restrict S) = Submonoid.map f S - Submonoid.le_prod_iff π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M Γ N)} : u β€ s.prod t β Submonoid.map (MonoidHom.fst M N) u β€ s β§ Submonoid.map (MonoidHom.snd M N) u β€ t - Submonoid.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) : S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βS) hf, map_mul' := β― } - Submonoid.prod_le_iff π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M Γ N)} : s.prod t β€ u β Submonoid.map (MonoidHom.inl M N) s β€ u β§ Submonoid.map (MonoidHom.inr M N) t β€ u - MulEquiv.submonoidMap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) : e.submonoidMap S = { toEquiv := (βe).image βS, map_mul' := β― } - Submonoid.equivMapOfInjective_coe_mulEquiv π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (e : M β* N) : S.equivMapOfInjective βe β― = e.submonoidMap S - MonoidHom.submonoidMap_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : Function.Surjective β(f.submonoidMap M') - MonoidHom.submonoidMap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) (x : β₯M') : β((f.submonoidMap M') x) = f βx - Submonoid.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) (x : β₯S) : β((S.equivMapOfInjective f hf) x) = f βx - MonoidHom.submonoidMap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : f.submonoidMap M' = { toFun := fun x => β¨f βx, β―β©, map_one' := β―, map_mul' := β― } - MulEquiv.coe_submonoidMap_apply π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) (g : β₯S) : β((e.submonoidMap S) g) = e βg - MulEquiv.submonoidMap_symm_apply π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) (g : β₯(Submonoid.map (βe) S)) : (e.submonoidMap S).symm g = β¨e.symm βg, β―β© - Subgroup.map_toSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (K : Subgroup G) : (Subgroup.map f K).toSubmonoid = Submonoid.map f K.toSubmonoid - MonoidHom.subgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) (x : β₯H.toSubmonoid) : β((f.subgroupMap H) x) = f βx - Submonoid.map_powers π Mathlib.Algebra.Group.Submonoid.Membership
{M : Type u_1} [Monoid M] {N : Type u_4} {F : Type u_5} [Monoid N] [FunLike F M N] [MonoidHomClass F M N] (f : F) (m : M) : Submonoid.map f (Submonoid.powers m) = Submonoid.powers (f m) - Submonoid.FG.map π Mathlib.GroupTheory.Finiteness
{M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (h : P.FG) (e : M β* M') : (Submonoid.map e P).FG - Submonoid.FG.map_injective π Mathlib.GroupTheory.Finiteness
{M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (e : M β* M') (he : Function.Injective βe) (h : (Submonoid.map e P).FG) : P.FG - Submonoid.iSup_map_mulSingle π Mathlib.GroupTheory.Finiteness
{ΞΉ : Type u_3} [Finite ΞΉ] {M : ΞΉ β Type u_4} [(i : ΞΉ) β Monoid (M i)] {P : (i : ΞΉ) β Submonoid (M i)} [DecidableEq ΞΉ] : β¨ i, Submonoid.map (MonoidHom.mulSingle M i) (P i) = Submonoid.pi Set.univ P - Submonoid.LocalizationMap.ofMulEquivOfDom π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : T.LocalizationMap N - Submonoid.LocalizationMap.mulEquivOfMulEquiv π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (k : T.LocalizationMap Q) {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : N β* Q - Submonoid.LocalizationMap.mulEquivOfMulEquiv.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (k : T.LocalizationMap Q) {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : f.mulEquivOfMulEquiv k H = f.mulEquivOfLocalizations (k.ofMulEquivOfDom H) - Submonoid.LocalizationMap.ofMulEquivOfDom_eq π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : (f.ofMulEquivOfDom H).toMonoidHom = f.toMonoidHom.comp k.toMonoidHom - Submonoid.LocalizationMap.of_mulEquivOfMulEquiv π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : (f.ofMulEquivOfLocalizations (f.mulEquivOfMulEquiv k H)).toMonoidHom = k.toMonoidHom.comp j.toMonoidHom - Submonoid.LocalizationMap.ofMulEquivOfDom.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : f.ofMulEquivOfDom H = (f.toMonoidHom.comp k.toMonoidHom).toLocalizationMap β― β― β― - Submonoid.LocalizationMap.ofMulEquivOfDom_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) (x : P) : (f.ofMulEquivOfDom H) x = f (k x) - Submonoid.LocalizationMap.ofMulEquivOfDom_comp_symm π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) (x : M) : (f.ofMulEquivOfDom H) (k.symm x) = f x - Submonoid.LocalizationMap.of_mulEquivOfMulEquiv_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) : (f.ofMulEquivOfLocalizations (f.mulEquivOfMulEquiv k H)) x = k (j x) - Submonoid.LocalizationMap.ofMulEquivOfDom_comp π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : M β* P} (H : Submonoid.map k.symm.toMonoidHom T = S) (x : M) : (f.ofMulEquivOfDom H) (k x) = f x - Submonoid.LocalizationMap.map_injective_of_injective π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {g : M β* P} {Q : Type u_4} [CommMonoid Q] (hg : Function.Injective βg) (k : (Submonoid.map g S).LocalizationMap Q) : Function.Injective β(f.map β― k) - Submonoid.LocalizationMap.map_surjective_of_surjective π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {g : M β* P} {Q : Type u_4} [CommMonoid Q] (hg : Function.Surjective βg) (k : (Submonoid.map g S).LocalizationMap Q) : Function.Surjective β(f.map β― k) - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) : (f.mulEquivOfMulEquiv k H) (f x) = k (j x) - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq_map π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : (f.mulEquivOfMulEquiv k H).toMonoidHom = f.map β― k - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq_map_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : N) : (f.mulEquivOfMulEquiv k H) x = (f.map β― k) x - Submonoid.LocalizationMap.mulEquivOfMulEquiv_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) (y : β₯S) : (f.mulEquivOfMulEquiv k H) (f.mk' x y) = k.mk' (j x) β¨j βy, β―β© - Submonoid.LocalizationMap.ofMulEquivOfDom_id π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : S.LocalizationMap N) : f.ofMulEquivOfDom β― = f - Algebra.algebraMapSubmonoid.eq_1 π Mathlib.Algebra.Algebra.Basic
{R : Type u} [CommSemiring R] (S : Type u_1) [Semiring S] [Algebra R S] (M : Submonoid R) : Algebra.algebraMapSubmonoid S M = Submonoid.map (algebraMap R S) M - Algebra.algebraMapSubmonoid_map_eq π Mathlib.Algebra.Algebra.Hom
{R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (M : Submonoid R) {B : Type w} [Semiring B] [Algebra R B] (f : A ββ[R] B) : Submonoid.map f (Algebra.algebraMapSubmonoid A M) = Algebra.algebraMapSubmonoid B M - MulEquivClass.map_nonZeroDivisors π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_4} {S : Type u_5} {F : Type u_6} [MonoidWithZero Mβ] [MonoidWithZero S] [EquivLike F Mβ S] [MulEquivClass F Mβ S] (h : F) : Submonoid.map h (nonZeroDivisors Mβ) = nonZeroDivisors S - map_le_nonZeroDivisors_of_injective π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{F : Type u_1} {Mβ : Type u_2} {Mβ' : Type u_3} [MonoidWithZero Mβ] [MonoidWithZero Mβ'] [FunLike F Mβ Mβ'] [NoZeroDivisors Mβ'] [MonoidWithZeroHomClass F Mβ Mβ'] (f : F) (hf : Function.Injective βf) {S : Submonoid Mβ} (hS : S β€ nonZeroDivisors Mβ) : Submonoid.map f S β€ nonZeroDivisors Mβ' - Submonoid.pi_le_iff π Mathlib.Algebra.Group.Submonoid.Finite
{Ξ· : Type u_1} {f : Ξ· β Type u_2} [(i : Ξ·) β MulOneClass (f i)] [Finite Ξ·] [DecidableEq Ξ·] {H : (i : Ξ·) β Submonoid (f i)} {J : Submonoid ((i : Ξ·) β f i)} : Submonoid.pi Set.univ H β€ J β β (i : Ξ·), Submonoid.map (MonoidHom.mulSingle f i) (H i) β€ J - Ideal.disjoint_map_primeCompl_iff_comap_le π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [Semiring S] {f : R β+* S} {p : Ideal R} {I : Ideal S} [p.IsPrime] : Disjoint βI β(Submonoid.map f p.primeCompl) β Ideal.comap f I β€ p - Matrix.submonoidCenter_eq_scalar_map π Mathlib.Data.Matrix.Basis
{n : Type u_3} {Ξ± : Type u_7} [DecidableEq n] [Fintype n] [Semiring Ξ±] : Submonoid.center (Matrix n n Ξ±) = Submonoid.map (Matrix.scalar n) (Submonoid.center Ξ±) - Submonoid.LocalizationMap.map_nonZeroDivisors_le π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {N : Type u_2} [CommMonoidWithZero N] (f : S.LocalizationMap N) : Submonoid.map f (nonZeroDivisors M) β€ nonZeroDivisors N - IsLocalization.map_nonZeroDivisors_le π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : Submonoid.map (algebraMap R S) (nonZeroDivisors R) β€ nonZeroDivisors S - IsLocalization.ringEquivOfRingEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) : S β+* Q - IsLocalization.map_injective_of_injective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Injective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Injective β(IsLocalization.map Q g β―) - IsLocalization.map_surjective_of_surjective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Surjective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Surjective β(IsLocalization.map Q g β―) - IsLocalization.ringEquivOfRingEquiv_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : S) : (IsLocalization.ringEquivOfRingEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.ringEquivOfRingEquiv_eq π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) (x : R) : (IsLocalization.ringEquivOfRingEquiv S Q j H) ((algebraMap R S) x) = (algebraMap P Q) (j x) - IsLocalization.ringEquivOfRingEquiv_symm_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : Q) : (IsLocalization.ringEquivOfRingEquiv S Q h H).symm a = (IsLocalization.map S βh.symm β―) a - IsLocalization.isLocalization_of_base_ringEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] (h : R β+* P) : IsLocalization (Submonoid.map h M) S - IsLocalization.isLocalization_iff_of_base_ringEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (h : R β+* P) : IsLocalization M S β IsLocalization (Submonoid.map h M) S - IsLocalization.ringEquivOfRingEquiv.congr_simp π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M Mβ : Submonoid R} (e_M : M = Mβ) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T Tβ : Submonoid P} (e_T : T = Tβ) (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h hβ : R β+* P) (e_h : h = hβ) (H : Submonoid.map h.toMonoidHom M = T) : IsLocalization.ringEquivOfRingEquiv S Q h H = IsLocalization.ringEquivOfRingEquiv S Q hβ β― - IsLocalization.ringEquivOfRingEquiv_symm π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j M = T) : (IsLocalization.ringEquivOfRingEquiv S Q j H).symm = IsLocalization.ringEquivOfRingEquiv Q S j.symm β― - IsLocalization.ringEquivOfRingEquiv_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) (x : R) (y : β₯M) : (IsLocalization.ringEquivOfRingEquiv S Q j H) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (j x) β¨j βy, β―β© - IsLocalization.ringEquivOfRingEquiv_eq_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) : β(IsLocalization.ringEquivOfRingEquiv S Q j H) = IsLocalization.map Q βj β― - IsLocalization.algEquivOfAlgEquiv π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) : S ββ[A] Q - IsLocalization.algEquivOfAlgEquiv_eq π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) (x : R) : (IsLocalization.algEquivOfAlgEquiv S Q h H) ((algebraMap R S) x) = (algebraMap P Q) (h x) - IsLocalization.algEquivOfAlgEquiv_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : S) : (IsLocalization.algEquivOfAlgEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.algEquivOfAlgEquiv_symm π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm = IsLocalization.algEquivOfAlgEquiv Q S h.symm β― - IsLocalization.algEquivOfAlgEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : Q) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm a = (IsLocalization.map S β(βh).symm β―) a - IsLocalization.algEquivOfAlgEquiv_eq_map π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : β(IsLocalization.algEquivOfAlgEquiv S Q h H) = IsLocalization.map Q βh β― - IsLocalization.algEquivOfAlgEquiv.congr_simp π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M Mβ : Submonoid R} (e_M : M = Mβ) (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T Tβ : Submonoid P} (e_T : T = Tβ) (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h hβ : R ββ[A] P) (e_h : h = hβ) (H : Submonoid.map h M = T) : IsLocalization.algEquivOfAlgEquiv S Q h H = IsLocalization.algEquivOfAlgEquiv S Q hβ β― - IsLocalization.algEquivOfAlgEquiv_mk' π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) (x : R) (y : β₯M) : (IsLocalization.algEquivOfAlgEquiv S Q h H) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (h x) β¨h βy, β―β© - Subgroup.ofUnits.eq_1 π Mathlib.Algebra.Group.Submonoid.Units
{M : Type u_1} [Monoid M] (S : Subgroup MΛ£) : S.ofUnits = Submonoid.map (Units.coeHom M) S.toSubmonoid - IsLocalization.Away.instMapRingHomPowersOfCoe π Mathlib.RingTheory.Localization.Away.Basic
{A : Type u_5} [CommSemiring A] {B : Type u_6} [CommSemiring B] (Bβ : Type u_8) [CommSemiring Bβ] [Algebra B Bβ] {f : A β+* B} (a : A) [IsLocalization.Away (f a) Bβ] : IsLocalization (Submonoid.map f (Submonoid.powers a)) Bβ - CommRingCat.isPushout_of_isLocalization π Mathlib.Algebra.Category.Ring.Constructions
{R S Rβ Sβ : Type u} [CommRing R] [CommRing Rβ] [Algebra R Rβ] [CommRing S] [CommRing Sβ] [Algebra S Sβ] (f : R β+* S) (fβ : Rβ β+* Sβ) (H : fβ.comp (algebraMap R Rβ) = (algebraMap S Sβ).comp f) (M : Submonoid R) [IsLocalization M Rβ] [IsLocalization (Submonoid.map f M) Sβ] : CategoryTheory.IsPushout (CommRingCat.ofHom f) (CommRingCat.ofHom (algebraMap R Rβ)) (CommRingCat.ofHom (algebraMap S Sβ)) (CommRingCat.ofHom fβ) - IsLocalization.of_surjective π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] {R' : Type u_3} {S' : Type u_4} [CommRing R'] [CommRing S'] [Algebra R' S'] (f : R β+* R') (hf : Function.Surjective βf) (g : S β+* S') (hg : Function.Surjective βg) (H : g.comp (algebraMap R S) = (algebraMap R' S').comp f) (H' : RingHom.ker g β€ Ideal.map (algebraMap R S) (RingHom.ker f)) : IsLocalization (Submonoid.map f M) S' - IsLocalization.isLocalization_algebraMapSubmonoid_map_algHom π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (M : Submonoid R) {A : Type u_6} [CommSemiring A] [Algebra R A] {B : Type u_7} [CommSemiring B] [Algebra R B] (Bβ : Type u_10) [CommSemiring Bβ] [Algebra B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] (f : A ββ[R] B) : IsLocalization (Submonoid.map f.toRingHom (Algebra.algebraMapSubmonoid A M)) Bβ - Polynomial.isLocalization π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (S : Submonoid R) (A : Type u_6) [CommSemiring A] [Algebra R A] [IsLocalization S A] : IsLocalization (Submonoid.map Polynomial.C S) (Polynomial A) - IsLocalization.ker_map π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : RingHom.ker (IsLocalization.map Q g β―) = Ideal.map (algebraMap R S) (RingHom.ker g) - RingHom.toKerIsLocalization_isLocalizedModule π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : IsLocalizedModule M (RingHom.toKerIsLocalization S Q g β―) - RingHom.IsStableUnderBaseChange.isLocalization_map π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] (f : R β+* S) [IsLocalization (Submonoid.map f M) Sα΅£] (hf : P f) : P (IsLocalization.map Sα΅£ f β―) - RingHom.isIntegralElem_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommSemiring R] [CommSemiring S] (f : R β+* S) (x : S) (p : Polynomial R) (hf : Polynomial.evalβ f x p = 0) (M : Submonoid R) (hM : p.leadingCoeff β M) {Rβ : Type u_7} {Sβ : Type u_8} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map f M) Sβ] : (IsLocalization.map Sβ f β―).IsIntegralElem ((algebraMap S Sβ) x) - isIntegral_localization' π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommRing R] [CommRing S] {f : R β+* S} (hf : f.IsIntegral) (M : Submonoid R) : (IsLocalization.map (Localization (Submonoid.map (βf) M)) f β―).IsIntegral - IsLocalization.localizationLocalizationSubmodule.eq_1 π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] (N : Submonoid S) : IsLocalization.localizationLocalizationSubmodule M N = Submonoid.comap (algebraMap R S) (N β Submonoid.map (algebraMap R S) M) - IsLocalization.isLocalization_of_submonoid_le π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (T : Type u_3) [CommSemiring T] [Algebra R T] (M N : Submonoid R) (h : M β€ N) [IsLocalization M S] [IsLocalization N T] [Algebra S T] [IsScalarTower R S T] : IsLocalization (Submonoid.map (algebraMap R S) N) T - MvPolynomial.isLocalization π Mathlib.RingTheory.MvPolynomial.Localization
{Ο : Type u_1} {R : Type u_2} [CommRing R] (M : Submonoid R) (S : Type u_3) [CommRing S] [Algebra R S] [IsLocalization M S] : IsLocalization (Submonoid.map MvPolynomial.C M) (MvPolynomial Ο S) - MvPolynomial.isLocalization_C_mk' π Mathlib.RingTheory.MvPolynomial.Localization
{Ο : Type u_1} {R : Type u_2} [CommRing R] (M : Submonoid R) (S : Type u_3) [CommRing S] [Algebra R S] [IsLocalization M S] (a : R) (m : β₯M) : MvPolynomial.C (IsLocalization.mk' S a m) = IsLocalization.mk' (MvPolynomial Ο S) (MvPolynomial.C a) β¨MvPolynomial.C βm, β―β© - IsLocalization.submonoid_map_le_is_unit π Mathlib.RingTheory.Localization.InvSubmonoid
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] : Submonoid.map (algebraMap R S) M β€ IsUnit.submonoid S - IsLocalization.equivInvSubmonoid π Mathlib.RingTheory.Localization.InvSubmonoid
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] : β₯(Submonoid.map (algebraMap R S) M) β* β₯(IsLocalization.invSubmonoid M S) - IsLocalization.smul_mem_finsetIntegerMultiple_span π Mathlib.RingTheory.RingHom.Finite
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (M : Submonoid R) (S' : Type u_4) [CommRing S'] [Algebra S S'] [Algebra R S] [Algebra R S'] [IsScalarTower R S S'] [IsLocalization (Submonoid.map (algebraMap R S) M) S'] (x : S) (s : Finset S') (hx : (algebraMap S S') x β Submodule.span R βs) : β m, m β’ x β Submodule.span R β(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s) - IsLocalization.lift_mem_adjoin_finsetIntegerMultiple π Mathlib.RingTheory.RingHom.FiniteType
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (M : Submonoid R) {S' : Type u_4} [CommRing S'] [Algebra S S'] [Algebra R S'] [IsScalarTower R S S'] [IsLocalization (Submonoid.map (algebraMap R S) M) S'] (x : S) (s : Finset S') (hx : (algebraMap S S') x β Algebra.adjoin R βs) : β m, m β’ x β Algebra.adjoin R β(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s) - Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - Algebra.FormallyUnramified.localization_map π Mathlib.RingTheory.Unramified.Basic
{R : Type u_1} {S : Type u_2} {Rβ : Type u_3} {Sβ : Type u_4} [CommRing R] [CommRing S] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R S] [Algebra R Sβ] [Algebra S Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] [IsLocalization (Submonoid.map (algebraMap R S) M) Sβ] [Algebra.FormallyUnramified R S] : Algebra.FormallyUnramified Rβ Sβ - Algebra.FormallySmooth.localization_map π Mathlib.RingTheory.Smooth.Basic
{R : Type u_4} {A : Type u_5} {Rβ : Type u_6} {Sβ : Type u_7} [CommRing R] [CommRing A] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R A] [Algebra R Sβ] [Algebra A Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R A Sβ] [IsLocalization M Rβ] [IsLocalization (Submonoid.map (algebraMap R A) M) Sβ] [Algebra.FormallySmooth R A] : Algebra.FormallySmooth Rβ Sβ - Algebra.FormallyEtale.localization_map π Mathlib.RingTheory.Etale.Basic
{R : Type u_2} {S : Type u_3} {Rβ : Type u_4} {Sβ : Type u_5} [CommRing R] [CommRing S] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R S] [Algebra R Sβ] [Algebra S Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] [IsLocalization M Rβ] [IsLocalization (Submonoid.map (algebraMap R S) M) Sβ] [Algebra.FormallyEtale R S] : Algebra.FormallyEtale Rβ Sβ - pinGroup.mem_lipschitzGroup π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} (hx : x β pinGroup Q) : x β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid - lipschitzGroup.coe_mem_iff_mem π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : (CliffordAlgebra Q)Λ£} : βx β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid β x β lipschitzGroup Q - pinGroup.mem_iff π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} : x β pinGroup Q β x β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid β§ x β unitary (CliffordAlgebra Q) - IsLocalization.iff_map_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) [(i : ΞΉ) β CommSemiring (R i)] (S' : Type u_4) [CommSemiring S'] [Algebra ((i : ΞΉ) β R i) S'] (M : Submonoid ((i : ΞΉ) β R i)) [Finite ΞΉ] : IsLocalization M S' β IsLocalization (Submonoid.pi Set.univ fun i => Submonoid.map (Pi.evalRingHom R i) M) S' - IsLocalization.surjective_piRingHom_algebraMap_comp_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} {R : ΞΉ β Type u_2} (S : ΞΉ β Type u_3) [(i : ΞΉ) β CommSemiring (R i)] [(i : ΞΉ) β CommSemiring (S i)] [(i : ΞΉ) β Algebra (R i) (S i)] (M : Submonoid ((i : ΞΉ) β R i)) [β (i : ΞΉ), IsLocalization (Submonoid.map (Pi.evalRingHom R i) M) (S i)] [β (i : ΞΉ), Ring.KrullDimLE 0 (R i)] [β (i : ΞΉ), IsLocalRing (R i)] : Function.Surjective β(Pi.ringHom fun i => (algebraMap (R i) (S i)).comp (Pi.evalRingHom R i)) - IsLocalization.bijective_lift_piRingHom_algebraMap_comp_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) (S : ΞΉ β Type u_3) [(i : ΞΉ) β CommSemiring (R i)] [(i : ΞΉ) β CommSemiring (S i)] [(i : ΞΉ) β Algebra (R i) (S i)] (S' : Type u_4) [CommSemiring S'] [Algebra ((i : ΞΉ) β R i) S'] (M : Submonoid ((i : ΞΉ) β R i)) [β (i : ΞΉ), IsLocalization (Submonoid.map (Pi.evalRingHom R i) M) (S i)] [IsLocalization M S'] [Finite ΞΉ] : Function.Bijective β(IsLocalization.lift β―) - IsLocalization.isUnit_piRingHom_algebraMap_comp_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) (S : ΞΉ β Type u_3) [(i : ΞΉ) β CommSemiring (R i)] [(i : ΞΉ) β CommSemiring (S i)] [(i : ΞΉ) β Algebra (R i) (S i)] (M : Submonoid ((i : ΞΉ) β R i)) [β (i : ΞΉ), IsLocalization (Submonoid.map (Pi.evalRingHom R i) M) (S i)] (y : β₯M) : IsUnit ((Pi.ringHom fun i => (algebraMap (R i) (S i)).comp (Pi.evalRingHom R i)) βy)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c