Loogle!
Result
Found 149 declarations mentioning Submonoid.map.
- Submonoid.map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid N - Submonoid.map_id π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} [MulOneClass M] (S : Submonoid M) : Submonoid.map (MonoidHom.id M) S = S - Submonoid.map_injective_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : Function.Injective (Submonoid.map f) - Submonoid.map_surjective_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : Function.Surjective (Submonoid.map f) - Submonoid.map_bot π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : Submonoid.map f β₯ = β₯ - MonoidHom.mrange_eq_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : MonoidHom.mrange f = Submonoid.map f β€ - MonoidHom.map_mclosure π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (s : Set M) : Submonoid.map f (Submonoid.closure s) = Submonoid.closure (βf '' s) - Submonoid.comap_map_eq_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S : Submonoid M) : Submonoid.comap f (Submonoid.map f S) = S - Submonoid.map_comap_eq_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S : Submonoid N) : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.map_comap_eq_self_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (h : Function.Surjective βf) {S : Submonoid N} : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.coe_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : β(Submonoid.map f S) = βf '' βS - Submonoid.map_comap_eq π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid N) : Submonoid.map f (Submonoid.comap f S) = S β MonoidHom.mrange f - Submonoid.comap_map_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} : Submonoid.comap f (Submonoid.map f (Submonoid.comap f S)) = Submonoid.comap f S - Submonoid.map_comap_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : Submonoid.map f (Submonoid.comap f (Submonoid.map f S)) = Submonoid.map f S - Submonoid.le_comap_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : S β€ Submonoid.comap f (Submonoid.map f S) - Submonoid.map_comap_le π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {S : Submonoid N} {f : F} : Submonoid.map f (Submonoid.comap f S) β€ S - Submonoid.monotone_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} : Monotone (Submonoid.map f) - Submonoid.map_coe_toMonoidHom π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid.map (βf) S = Submonoid.map f S - MonoidHom.mrange.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : MonoidHom.mrange f = (Submonoid.map f β€).copy (Set.range βf) β― - Submonoid.mem_map_of_mem π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) {S : Submonoid M} {x : M} (hx : x β S) : f x β Submonoid.map f S - Submonoid.gc_map_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) : GaloisConnection (Submonoid.map f) (Submonoid.comap f) - Submonoid.map_strictMono_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : StrictMono (Submonoid.map f) - Submonoid.comap_iInf_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Injective βf) (S : ΞΉ β Submonoid M) : Submonoid.comap f (β¨ i, Submonoid.map f (S i)) = iInf S - Submonoid.map_iInf_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Surjective βf) (S : ΞΉ β Submonoid N) : Submonoid.map f (β¨ i, Submonoid.comap f (S i)) = iInf S - Submonoid.map_iInf π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Sort u_5} [Nonempty ΞΉ] (f : F) (hf : Function.Injective βf) (s : ΞΉ β Submonoid M) : Submonoid.map f (iInf s) = β¨ i, Submonoid.map f (s i) - Submonoid.mem_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {y : N} : y β Submonoid.map f S β β x β S, f x = y - Submonoid.map_comap_eq_self π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid N} (h : S β€ MonoidHom.mrange f) : Submonoid.map f (Submonoid.comap f S) = S - Submonoid.mem_map_iff_mem π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) {S : Submonoid M} {x : M} : f x β Submonoid.map f S β x β S - Submonoid.map_iSup π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Sort u_5} (f : F) (s : ΞΉ β Submonoid M) : Submonoid.map f (iSup s) = β¨ i, Submonoid.map f (s i) - Submonoid.map_inl π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid M) : Submonoid.map (MonoidHom.inl M N) s = s.prod β₯ - Submonoid.map_inr π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (s : Submonoid N) : Submonoid.map (MonoidHom.inr M N) s = β₯.prod s - Submonoid.map.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) : Submonoid.map f S = { carrier := βf '' βS, mul_mem' := β―, one_mem' := β― } - Submonoid.comap_inf_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S T : Submonoid M) : Submonoid.comap f (Submonoid.map f S β Submonoid.map f T) = S β T - Submonoid.gciMapComap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : GaloisCoinsertion (Submonoid.map f) (Submonoid.comap f) - Submonoid.giMapComap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : GaloisInsertion (Submonoid.map f) (Submonoid.comap f) - Submonoid.map_inf π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) (hf : Function.Injective βf) : Submonoid.map f (S β T) = Submonoid.map f S β Submonoid.map f T - Submonoid.map_inf_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S T : Submonoid N) : Submonoid.map f (Submonoid.comap f S β Submonoid.comap f T) = S β T - Submonoid.apply_coe_mem_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (f : F) (S : Submonoid M) (x : β₯S) : f βx β Submonoid.map f S - Submonoid.comap_iSup_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Injective βf) (S : ΞΉ β Submonoid M) : Submonoid.comap f (β¨ i, Submonoid.map f (S i)) = iSup S - Submonoid.map_iSup_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {ΞΉ : Type u_5} {f : F} (hf : Function.Surjective βf) (S : ΞΉ β Submonoid N) : Submonoid.map f (β¨ i, Submonoid.comap f (S i)) = iSup S - Submonoid.le_comap_of_map_le π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} : Submonoid.map f S β€ T β S β€ Submonoid.comap f T - Submonoid.map_le_of_le_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {T : Submonoid N} {f : F} : S β€ Submonoid.comap f T β Submonoid.map f S β€ T - MonoidHom.map_mrange π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (g : N β* P) (f : M β* N) : Submonoid.map g (MonoidHom.mrange f) = MonoidHom.mrange (g.comp f) - MonoidHom.mrange_comp π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {O : Type u_5} [MulOneClass O] (f : N β* O) (g : M β* N) : MonoidHom.mrange (f.comp g) = Submonoid.map f (MonoidHom.mrange g) - Submonoid.map_le_iff_le_comap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} {S : Submonoid M} {T : Submonoid N} : Submonoid.map f S β€ T β S β€ Submonoid.comap f T - Submonoid.map_sup π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] (S T : Submonoid M) (f : F) : Submonoid.map f (S β T) = Submonoid.map f S β Submonoid.map f T - Submonoid.map_map π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [MulOneClass M] [MulOneClass N] [MulOneClass P] (S : Submonoid M) (g : N β* P) (f : M β* N) : Submonoid.map g (Submonoid.map f S) = Submonoid.map (g.comp f) S - MonoidHom.submonoidMap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : β₯M' β* β₯(Submonoid.map f M') - Submonoid.map_equiv_top π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M β* N) : Submonoid.map f β€ = β€ - Submonoid.map_le_map_iff_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) {S T : Submonoid M} : Submonoid.map f S β€ Submonoid.map f T β S β€ T - Submonoid.comap_sup_map_of_injective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) (S T : Submonoid M) : Submonoid.comap f (Submonoid.map f S β Submonoid.map f T) = S β T - Submonoid.map_sup_comap_of_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) (S T : Submonoid N) : Submonoid.map f (Submonoid.comap f S β Submonoid.comap f T) = S β T - Submonoid.equivMapOfInjective π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) : β₯S β* β₯(Submonoid.map f S) - Submonoid.mem_map_equiv π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {f : M β* N} {K : Submonoid M} {x : N} : x β Submonoid.map f.toMonoidHom K β f.symm x β K - Submonoid.map_coe_toMulEquiv π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_5} [EquivLike F M N] [MulEquivClass F M N] (f : F) (S : Submonoid M) : Submonoid.map (βf) S = Submonoid.map f S - Submonoid.comap_equiv_eq_map_symm π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : N β* M) (K : Submonoid M) : Submonoid.comap f K = Submonoid.map f.symm K - Submonoid.map_equiv_eq_comap_symm π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (f : M β* N) (K : Submonoid M) : Submonoid.map f K = Submonoid.comap f.symm K - Submonoid.gciMapComap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Injective βf) : Submonoid.gciMapComap hf = β―.toGaloisCoinsertion β― - Submonoid.giMapComap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] {F : Type u_4} [FunLike F M N] [mc : MonoidHomClass F M N] {f : F} (hf : Function.Surjective βf) : Submonoid.giMapComap hf = β―.toGaloisInsertion β― - MonoidHom.restrict_mrange π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (f : M β* N) : MonoidHom.mrange (f.restrict S) = Submonoid.map f S - MulEquiv.submonoidMap π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) : β₯S β* β₯(Submonoid.map e S) - Submonoid.le_prod_iff π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M Γ N)} : u β€ s.prod t β Submonoid.map (MonoidHom.fst M N) u β€ s β§ Submonoid.map (MonoidHom.snd M N) u β€ t - Submonoid.equivMapOfInjective.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) : S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (βf) (βS) hf, map_mul' := β― } - Submonoid.prod_le_iff π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] {s : Submonoid M} {t : Submonoid N} {u : Submonoid (M Γ N)} : s.prod t β€ u β Submonoid.map (MonoidHom.inl M N) s β€ u β§ Submonoid.map (MonoidHom.inr M N) t β€ u - MonoidHom.submonoidMap_surjective π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : Function.Surjective β(f.submonoidMap M') - Submonoid.equivMapOfInjective_coe_mulEquiv π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (S : Submonoid M) (e : M β* N) : S.equivMapOfInjective βe β― = e.submonoidMap S - MonoidHom.submonoidMap_apply_coe π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) (x : β₯M') : β((f.submonoidMap M') x) = f βx - MulEquiv.submonoidMap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) : e.submonoidMap S = { toEquiv := (βe).image βS, map_mul' := β― } - MonoidHom.submonoidMap.eq_1 π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (f : M β* N) (M' : Submonoid M) : f.submonoidMap M' = { toFun := fun x => β¨f βx, β―β©, map_one' := β―, map_mul' := β― } - Submonoid.coe_equivMapOfInjective_apply π Mathlib.Algebra.Group.Submonoid.Operations
{N : Type u_2} [MulOneClass N] {M : Type u_5} [MulOneClass M] (S : Submonoid M) (f : M β* N) (hf : Function.Injective βf) (x : β₯S) : β((S.equivMapOfInjective f hf) x) = f βx - MulEquiv.coe_submonoidMap_apply π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) (g : β₯S) : β((e.submonoidMap S) g) = e βg - MulEquiv.submonoidMap_symm_apply π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) (g : β₯(Submonoid.map (βe) S)) : (e.submonoidMap S).symm g = β¨e.symm βg, β―β© - Subgroup.map_toSubmonoid π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (K : Subgroup G) : (Subgroup.map f K).toSubmonoid = Submonoid.map f K.toSubmonoid - MonoidHom.subgroupMap_apply_coe π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (f : G β* G') (H : Subgroup G) (x : β₯H.toSubmonoid) : β((f.subgroupMap H) x) = f βx - Submonoid.map_powers π Mathlib.Algebra.Group.Submonoid.Membership
{M : Type u_1} [Monoid M] {N : Type u_4} {F : Type u_5} [Monoid N] [FunLike F M N] [MonoidHomClass F M N] (f : F) (m : M) : Submonoid.map f (Submonoid.powers m) = Submonoid.powers (f m) - Algebra.algebraMapSubmonoid_map_eq π Mathlib.Algebra.Algebra.Hom
{R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [Algebra R A] (M : Submonoid R) {B : Type w} [CommRing B] [Algebra R B] (f : A ββ[R] B) : Submonoid.map f (Algebra.algebraMapSubmonoid A M) = Algebra.algebraMapSubmonoid B M - MulEquivClass.map_nonZeroDivisors π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{Mβ : Type u_4} {S : Type u_5} {F : Type u_6} [MonoidWithZero Mβ] [MonoidWithZero S] [EquivLike F Mβ S] [MulEquivClass F Mβ S] (h : F) : Submonoid.map h (nonZeroDivisors Mβ) = nonZeroDivisors S - map_le_nonZeroDivisors_of_injective π Mathlib.Algebra.GroupWithZero.NonZeroDivisors
{F : Type u_1} {Mβ : Type u_2} {Mβ' : Type u_3} [MonoidWithZero Mβ] [MonoidWithZero Mβ'] [FunLike F Mβ Mβ'] [NoZeroDivisors Mβ'] [MonoidWithZeroHomClass F Mβ Mβ'] (f : F) (hf : Function.Injective βf) {S : Submonoid Mβ} (hS : S β€ nonZeroDivisors Mβ) : Submonoid.map f S β€ nonZeroDivisors Mβ' - Ideal.disjoint_map_primeCompl_iff_comap_le π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [Semiring S] {f : R β+* S} {p : Ideal R} {I : Ideal S} [p.IsPrime] : Disjoint βI β(Submonoid.map f p.primeCompl) β Ideal.comap f I β€ p - Submonoid.LocalizationMap.ofMulEquivOfDom π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : T.LocalizationMap N - Submonoid.LocalizationMap.mulEquivOfMulEquiv π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (k : T.LocalizationMap Q) {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : N β* Q - Submonoid.LocalizationMap.mulEquivOfMulEquiv.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] (k : T.LocalizationMap Q) {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : f.mulEquivOfMulEquiv k H = f.mulEquivOfLocalizations (k.ofMulEquivOfDom H) - Submonoid.LocalizationMap.ofMulEquivOfDom_eq π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : (f.ofMulEquivOfDom H).toMap = f.toMap.comp k.toMonoidHom - Submonoid.LocalizationMap.of_mulEquivOfMulEquiv π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : (f.ofMulEquivOfLocalizations (f.mulEquivOfMulEquiv k H)).toMap = k.toMap.comp j.toMonoidHom - Submonoid.LocalizationMap.ofMulEquivOfDom.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) : f.ofMulEquivOfDom H = (f.toMap.comp k.toMonoidHom).toLocalizationMap β― β― β― - Submonoid.LocalizationMap.ofMulEquivOfDom_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) (x : P) : (f.ofMulEquivOfDom H).toMap x = f.toMap (k x) - Submonoid.LocalizationMap.map_injective_of_injective π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {g : M β* P} {Q : Type u_4} [CommMonoid Q] (hg : Function.Injective βg) (k : (Submonoid.map g S).LocalizationMap Q) : Function.Injective β(f.map β― k) - Submonoid.LocalizationMap.map_surjective_of_surjective π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {g : M β* P} {Q : Type u_4} [CommMonoid Q] (hg : Function.Surjective βg) (k : (Submonoid.map g S).LocalizationMap Q) : Function.Surjective β(f.map β― k) - Submonoid.LocalizationMap.ofMulEquivOfDom_comp_symm π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : P β* M} (H : Submonoid.map k.toMonoidHom T = S) (x : M) : (f.ofMulEquivOfDom H).toMap (k.symm x) = f.toMap x - Submonoid.LocalizationMap.of_mulEquivOfMulEquiv_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) : (f.ofMulEquivOfLocalizations (f.mulEquivOfMulEquiv k H)).toMap x = k.toMap (j x) - Submonoid.LocalizationMap.ofMulEquivOfDom_comp π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {k : M β* P} (H : Submonoid.map k.symm.toMonoidHom T = S) (x : M) : (f.ofMulEquivOfDom H).toMap (k x) = f.toMap x - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) : (f.mulEquivOfMulEquiv k H) (f.toMap x) = k.toMap (j x) - Submonoid.LocalizationMap.mulEquivOfMulEquiv_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : M) (y : β₯S) : (f.mulEquivOfMulEquiv k H) (f.mk' x y) = k.mk' (j x) β¨j βy, β―β© - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq_map π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) : (f.mulEquivOfMulEquiv k H).toMonoidHom = f.map β― k - Submonoid.LocalizationMap.mulEquivOfMulEquiv_eq_map_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (f : S.LocalizationMap N) {T : Submonoid P} {Q : Type u_4} [CommMonoid Q] {k : T.LocalizationMap Q} {j : M β* P} (H : Submonoid.map j.toMonoidHom S = T) (x : N) : (f.mulEquivOfMulEquiv k H) x = (f.map β― k) x - Submonoid.LocalizationMap.ofMulEquivOfDom_id π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : S.LocalizationMap N) : f.ofMulEquivOfDom β― = f - Submonoid.FG.map π Mathlib.GroupTheory.Finiteness
{M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (h : P.FG) (e : M β* M') : (Submonoid.map e P).FG - Submonoid.FG.map_injective π Mathlib.GroupTheory.Finiteness
{M : Type u_1} [Monoid M] {M' : Type u_3} [Monoid M'] {P : Submonoid M} (e : M β* M') (he : Function.Injective βe) (h : (Submonoid.map e P).FG) : P.FG - IsLocalization.map_nonZeroDivisors_le π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : Submonoid.map (algebraMap R S) (nonZeroDivisors R) β€ nonZeroDivisors S - IsLocalization.ringEquivOfRingEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) : S β+* Q - IsLocalization.map_injective_of_injective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Injective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Injective β(IsLocalization.map Q g β―) - IsLocalization.map_surjective_of_surjective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Surjective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Surjective β(IsLocalization.map Q g β―) - IsLocalization.ringEquivOfRingEquiv_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : S) : (IsLocalization.ringEquivOfRingEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.ringEquivOfRingEquiv_eq π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) (x : R) : (IsLocalization.ringEquivOfRingEquiv S Q j H) ((algebraMap R S) x) = (algebraMap P Q) (j x) - IsLocalization.ringEquivOfRingEquiv_symm_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : Q) : (IsLocalization.ringEquivOfRingEquiv S Q h H).symm a = (IsLocalization.map S βh.symm β―) a - IsLocalization.isLocalization_of_base_ringEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] (h : R β+* P) : IsLocalization (Submonoid.map h M) S - IsLocalization.isLocalization_iff_of_base_ringEquiv π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (h : R β+* P) : IsLocalization M S β IsLocalization (Submonoid.map h M) S - IsLocalization.ringEquivOfRingEquiv_eq_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) : β(IsLocalization.ringEquivOfRingEquiv S Q j H) = IsLocalization.map Q βj β― - IsLocalization.ringEquivOfRingEquiv_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) (x : R) (y : β₯M) : (IsLocalization.ringEquivOfRingEquiv S Q j H) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (j x) β¨j βy, β―β© - IsLocalization.ringEquivOfRingEquiv_symm π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j M = T) : (IsLocalization.ringEquivOfRingEquiv S Q j H).symm = IsLocalization.ringEquivOfRingEquiv Q S j.symm β― - IsLocalization.algEquivOfAlgEquiv π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) : S ββ[A] Q - IsLocalization.algEquivOfAlgEquiv_eq π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) (x : R) : (IsLocalization.algEquivOfAlgEquiv S Q h H) ((algebraMap R S) x) = (algebraMap P Q) (h x) - IsLocalization.algEquivOfAlgEquiv_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : S) : (IsLocalization.algEquivOfAlgEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.algEquivOfAlgEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : Q) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm a = (IsLocalization.map S β(βh).symm β―) a - IsLocalization.algEquivOfAlgEquiv_eq_map π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : β(IsLocalization.algEquivOfAlgEquiv S Q h H) = IsLocalization.map Q βh β― - IsLocalization.algEquivOfAlgEquiv_mk' π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) (x : R) (y : β₯M) : (IsLocalization.algEquivOfAlgEquiv S Q h H) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (h x) β¨h βy, β―β© - IsLocalization.algEquivOfAlgEquiv_symm π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm = IsLocalization.algEquivOfAlgEquiv Q S h.symm β― - Algebra.algebraMapSubmonoid.eq_1 π Mathlib.RingTheory.Localization.Away.Basic
{R : Type u} [CommSemiring R] (S : Type u_1) [Semiring S] [Algebra R S] (M : Submonoid R) : Algebra.algebraMapSubmonoid S M = Submonoid.map (algebraMap R S) M - IsLocalization.Away.instMapRingHomPowersOfCoe π Mathlib.RingTheory.Localization.Away.Basic
{A : Type u_5} [CommSemiring A] {B : Type u_6} [CommSemiring B] (Bβ : Type u_8) [CommSemiring Bβ] [Algebra B Bβ] {f : A β+* B} (a : A) [IsLocalization.Away (f a) Bβ] : IsLocalization (Submonoid.map f (Submonoid.powers a)) Bβ - IsLocalization.of_surjective π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] {R' : Type u_3} {S' : Type u_4} [CommRing R'] [CommRing S'] [Algebra R' S'] (f : R β+* R') (hf : Function.Surjective βf) (g : S β+* S') (hg : Function.Surjective βg) (H : g.comp (algebraMap R S) = (algebraMap R' S').comp f) (H' : RingHom.ker g β€ Ideal.map (algebraMap R S) (RingHom.ker f)) : IsLocalization (Submonoid.map f M) S' - RingHom.IsStableUnderBaseChange.isLocalization_map π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] (f : R β+* S) [IsLocalization (Submonoid.map f M) Sα΅£] (hf : P f) : P (IsLocalization.map Sα΅£ f β―) - RingHom.isIntegralElem_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommSemiring R] [CommSemiring S] (f : R β+* S) (x : S) (p : Polynomial R) (hf : Polynomial.evalβ f x p = 0) (M : Submonoid R) (hM : p.leadingCoeff β M) {Rβ : Type u_7} {Sβ : Type u_8} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map f M) Sβ] : (IsLocalization.map Sβ f β―).IsIntegralElem ((algebraMap S Sβ) x) - isIntegral_localization' π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommRing R] [CommRing S] {f : R β+* S} (hf : f.IsIntegral) (M : Submonoid R) : (IsLocalization.map (Localization (Submonoid.map (βf) M)) f β―).IsIntegral - IsLocalization.isLocalization_algebraMapSubmonoid_map_algHom π Mathlib.RingTheory.Localization.Algebra
{R : Type u} [CommRing R] (M : Submonoid R) {A : Type v} [CommRing A] [Algebra R A] {B : Type w} [CommRing B] [Algebra R B] (Bβ : Type v') [CommRing Bβ] [Algebra B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] (f : A ββ[R] B) : IsLocalization (Submonoid.map f.toRingHom (Algebra.algebraMapSubmonoid A M)) Bβ - Polynomial.isLocalization π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (S : Submonoid R) (A : Type u_6) [CommSemiring A] [Algebra R A] [IsLocalization S A] : IsLocalization (Submonoid.map Polynomial.C S) (Polynomial A) - IsLocalization.ker_map π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : RingHom.ker (IsLocalization.map Q g β―) = Ideal.map (algebraMap R S) (RingHom.ker g) - RingHom.toKerIsLocalization_isLocalizedModule π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : IsLocalizedModule M (RingHom.toKerIsLocalization S Q g β―) - IsLocalization.localizationLocalizationSubmodule.eq_1 π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) {S : Type u_2} [CommSemiring S] [Algebra R S] (N : Submonoid S) : IsLocalization.localizationLocalizationSubmodule M N = Submonoid.comap (algebraMap R S) (N β Submonoid.map (algebraMap R S) M) - IsLocalization.isLocalization_of_submonoid_le π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (T : Type u_3) [CommSemiring T] [Algebra R T] (M N : Submonoid R) (h : M β€ N) [IsLocalization M S] [IsLocalization N T] [Algebra S T] [IsScalarTower R S T] : IsLocalization (Submonoid.map (algebraMap R S) N) T - Subgroup.ofUnits.eq_1 π Mathlib.Algebra.Group.Submonoid.Units
{M : Type u_1} [Monoid M] (S : Subgroup MΛ£) : S.ofUnits = Submonoid.map (Units.coeHom M) S.toSubmonoid - MvPolynomial.isLocalization π Mathlib.RingTheory.MvPolynomial.Localization
{Ο : Type u_1} {R : Type u_2} [CommRing R] (M : Submonoid R) (S : Type u_3) [CommRing S] [Algebra R S] [IsLocalization M S] : IsLocalization (Submonoid.map MvPolynomial.C M) (MvPolynomial Ο S) - MvPolynomial.isLocalization_C_mk' π Mathlib.RingTheory.MvPolynomial.Localization
{Ο : Type u_1} {R : Type u_2} [CommRing R] (M : Submonoid R) (S : Type u_3) [CommRing S] [Algebra R S] [IsLocalization M S] (a : R) (m : β₯M) : MvPolynomial.C (IsLocalization.mk' S a m) = IsLocalization.mk' (MvPolynomial Ο S) (MvPolynomial.C a) β¨MvPolynomial.C βm, β―β© - IsLocalization.submonoid_map_le_is_unit π Mathlib.RingTheory.Localization.InvSubmonoid
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] : Submonoid.map (algebraMap R S) M β€ IsUnit.submonoid S - IsLocalization.equivInvSubmonoid π Mathlib.RingTheory.Localization.InvSubmonoid
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] : β₯(Submonoid.map (algebraMap R S) M) β* β₯(IsLocalization.invSubmonoid M S) - IsLocalization.smul_mem_finsetIntegerMultiple_span π Mathlib.RingTheory.RingHom.Finite
{R S : Type u} [CommRing R] [CommRing S] (M : Submonoid R) (S' : Type u) [CommRing S'] [Algebra S S'] [Algebra R S] [Algebra R S'] [IsScalarTower R S S'] [IsLocalization (Submonoid.map (algebraMap R S) M) S'] (x : S) (s : Finset S') (hx : (algebraMap S S') x β Submodule.span R βs) : β m, m β’ x β Submodule.span R β(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s) - RingHom.IsLocalization.lift_mem_adjoin_finsetIntegerMultiple π Mathlib.RingTheory.RingHom.FiniteType
{R S : Type u} [CommRing R] [CommRing S] (M : Submonoid R) {S' : Type u} [CommRing S'] [Algebra S S'] [Algebra R S] [Algebra R S'] [IsScalarTower R S S'] [IsLocalization (Submonoid.map (algebraMap R S) M) S'] (x : S) (s : Finset S') (hx : (algebraMap S S') x β Algebra.adjoin R βs) : β m, m β’ x β Algebra.adjoin R β(IsLocalization.finsetIntegerMultiple (Submonoid.map (algebraMap R S) M) s) - Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Ideal.Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - Ideal.Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - Algebra.FormallySmooth.localization_map π Mathlib.RingTheory.Smooth.Basic
{R S Rβ Sβ : Type u} [CommRing R] [CommRing S] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R S] [Algebra R Sβ] [Algebra S Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] [IsLocalization M Rβ] [IsLocalization (Submonoid.map (algebraMap R S) M) Sβ] [Algebra.FormallySmooth R S] : Algebra.FormallySmooth Rβ Sβ - Algebra.FormallyUnramified.localization_map π Mathlib.RingTheory.Unramified.Basic
{R : Type u_1} {S : Type u_2} {Rβ : Type u_3} {Sβ : Type u_4} [CommRing R] [CommRing S] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R S] [Algebra R Sβ] [Algebra S Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] [IsLocalization (Submonoid.map (algebraMap R S) M) Sβ] [Algebra.FormallyUnramified R S] : Algebra.FormallyUnramified Rβ Sβ - Algebra.FormallyEtale.localization_map π Mathlib.RingTheory.Etale.Basic
{R S Rβ Sβ : Type u} [CommRing R] [CommRing S] [CommRing Rβ] [CommRing Sβ] (M : Submonoid R) [Algebra R S] [Algebra R Sβ] [Algebra S Sβ] [Algebra R Rβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] [IsLocalization M Rβ] [IsLocalization (Submonoid.map (algebraMap R S) M) Sβ] [Algebra.FormallyEtale R S] : Algebra.FormallyEtale Rβ Sβ - pinGroup.mem_lipschitzGroup π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} (hx : x β pinGroup Q) : x β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid - lipschitzGroup.coe_mem_iff_mem π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : (CliffordAlgebra Q)Λ£} : βx β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid β x β lipschitzGroup Q - pinGroup.mem_iff π Mathlib.LinearAlgebra.CliffordAlgebra.SpinGroup
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {x : CliffordAlgebra Q} : x β pinGroup Q β x β Submonoid.map (Units.coeHom (CliffordAlgebra Q)) (lipschitzGroup Q).toSubmonoid β§ x β unitary (CliffordAlgebra Q) - IsLocalization.iff_map_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) [(i : ΞΉ) β CommSemiring (R i)] (S' : Type u_4) [CommSemiring S'] [Algebra ((i : ΞΉ) β R i) S'] (M : Submonoid ((i : ΞΉ) β R i)) [Finite ΞΉ] : IsLocalization M S' β IsLocalization (Submonoid.pi Set.univ fun i => Submonoid.map (Pi.evalRingHom R i) M) S' - IsLocalization.bijective_lift_piRingHom_algebraMap_comp_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) (S : ΞΉ β Type u_3) [(i : ΞΉ) β CommSemiring (R i)] [(i : ΞΉ) β CommSemiring (S i)] [(i : ΞΉ) β Algebra (R i) (S i)] (S' : Type u_4) [CommSemiring S'] [Algebra ((i : ΞΉ) β R i) S'] (M : Submonoid ((i : ΞΉ) β R i)) [β (i : ΞΉ), IsLocalization (Submonoid.map (Pi.evalRingHom R i) M) (S i)] [IsLocalization M S'] [Finite ΞΉ] : Function.Bijective β(IsLocalization.lift β―) - IsLocalization.isUnit_piRingHom_algebraMap_comp_piEvalRingHom π Mathlib.RingTheory.Localization.Pi
{ΞΉ : Type u_1} (R : ΞΉ β Type u_2) (S : ΞΉ β Type u_3) [(i : ΞΉ) β CommSemiring (R i)] [(i : ΞΉ) β CommSemiring (S i)] [(i : ΞΉ) β Algebra (R i) (S i)] (M : Submonoid ((i : ΞΉ) β R i)) [β (i : ΞΉ), IsLocalization (Submonoid.map (Pi.evalRingHom R i) M) (S i)] (y : β₯M) : IsUnit ((Pi.ringHom fun i => (algebraMap (R i) (S i)).comp (Pi.evalRingHom R i)) βy)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65