Loogle!
Result
Found 33 declarations mentioning Subring.map.
- Subring.map_id ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} [Ring R] (s : Subring R) : Subring.map (RingHom.id R) s = s - Subring.map ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (s : Subring R) : Subring S - RingHom.range_eq_map ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) : f.range = Subring.map f โค - Subring.map_bot ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) : Subring.map f โฅ = โฅ - Subring.map_comap_eq ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (t : Subring S) : Subring.map f (Subring.comap f t) = t โ f.range - Subring.gc_map_comap ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) : GaloisConnection (Subring.map f) (Subring.comap f) - Subring.map_comap_eq_self ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} {t : Subring S} (h : t โค f.range) : Subring.map f (Subring.comap f t) = t - RingHom.map_closure ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (s : Set R) : Subring.map f (Subring.closure s) = Subring.closure (โf '' s) - Subring.comap_map_eq_self_of_injective ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} (hf : Function.Injective โf) (s : Subring R) : Subring.comap f (Subring.map f s) = s - Subring.map_comap_eq_self_of_surjective ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} (hf : Function.Surjective โf) (t : Subring S) : Subring.map f (Subring.comap f t) = t - Subring.map_iSup ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {ฮน : Sort u_1} (f : R โ+* S) (s : ฮน โ Subring R) : Subring.map f (iSup s) = โจ i, Subring.map f (s i) - RingHom.map_range ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} {T : Type w} [Ring R] [Ring S] [Ring T] (g : S โ+* T) (f : R โ+* S) : Subring.map g f.range = (g.comp f).range - Subring.map_le_iff_le_comap ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} {s : Subring R} {t : Subring S} : Subring.map f s โค t โ s โค Subring.comap f t - Subring.map_map ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} {T : Type w} [Ring R] [Ring S] [Ring T] (s : Subring R) (g : S โ+* T) (f : R โ+* S) : Subring.map g (Subring.map f s) = Subring.map (g.comp f) s - Subring.coe_map ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (s : Subring R) : โ(Subring.map f s) = โf '' โs - Subring.map_sup ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (s t : Subring R) (f : R โ+* S) : Subring.map f (s โ t) = Subring.map f s โ Subring.map f t - Subring.map_iInf ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {ฮน : Sort u_1} [Nonempty ฮน] (f : R โ+* S) (hf : Function.Injective โf) (s : ฮน โ Subring R) : Subring.map f (iInf s) = โจ i, Subring.map f (s i) - Subring.map_inf ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (s t : Subring R) (f : R โ+* S) (hf : Function.Injective โf) : Subring.map f (s โ t) = Subring.map f s โ Subring.map f t - Subring.mem_map ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} {s : Subring R} {y : S} : y โ Subring.map f s โ โ x โ s, f x = y - Subring.comap_map_eq_self ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} {s : Subring R} (h : โf โปยน' {0} โ โs) : Subring.comap f (Subring.map f s) = s - Subring.comap_map_eq ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (s : Subring R) : Subring.comap f (Subring.map f s) = s โ Subring.closure (โf โปยน' {0}) - Subring.equivMapOfInjective ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (f : R โ+* S) (hf : Function.Injective โf) : โฅs โ+* โฅ(Subring.map f s) - Subring.mem_map_equiv ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {f : R โ+* S} {K : Subring R} {x : S} : x โ Subring.map (โf) K โ f.symm x โ K - RingEquiv.subringMap ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] {s : Subring R} (e : R โ+* S) : โฅs โ+* โฅ(Subring.map e.toRingHom s) - Subring.comap_equiv_eq_map_symm ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (K : Subring S) : Subring.comap (โf) K = Subring.map (โf.symm) K - Subring.map_equiv_eq_comap_symm ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (f : R โ+* S) (K : Subring R) : Subring.map (โf) K = Subring.comap (โf.symm) K - Subring.coe_equivMapOfInjective_apply ๐ Mathlib.Algebra.Ring.Subring.Basic
{R : Type u} {S : Type v} [Ring R] [Ring S] (s : Subring R) (f : R โ+* S) (hf : Function.Injective โf) (x : โฅs) : โ((s.equivMapOfInjective f hf) x) = f โx - Subring.pointwise_smul_def ๐ Mathlib.Algebra.Ring.Subring.Pointwise
{M : Type u_1} {R : Type u_2} [Monoid M] [Ring R] [MulSemiringAction M R] {a : M} (S : Subring R) : a โข S = Subring.map (MulSemiringAction.toRingHom M R a) S - LocalSubring.map_toSubring ๐ Mathlib.RingTheory.LocalRing.LocalSubring
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Nontrivial S] (f : R โ+* S) (s : LocalSubring R) : (LocalSubring.map f s).toSubring = Subring.map f s.toSubring - LocalSubring.range_toSubring ๐ Mathlib.RingTheory.LocalRing.LocalSubring
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsLocalRing R] [Nontrivial S] (f : R โ+* S) : (LocalSubring.range f).toSubring = (Subring.map f โค).copy (Set.range โf) โฏ - instIsLocalRingSubtypeMemSubringMapOfNontrivial ๐ Mathlib.RingTheory.LocalRing.LocalSubring
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Nontrivial S] (f : R โ+* S) (s : Subring R) [IsLocalRing โฅs] : IsLocalRing โฅ(Subring.map f s) - LaurentSeries.powerSeries_ext_subring ๐ Mathlib.RingTheory.LaurentSeries
(K : Type u_2) [Field K] : Subring.map (LaurentSeries.LaurentSeriesRingEquiv K).toRingHom (LaurentSeries.powerSeries_as_subring K) = (IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers (RatFunc K) (Polynomial.idealX K)).toSubring - LaurentSeries.powerSeriesEquivSubring_apply ๐ Mathlib.RingTheory.LaurentSeries
(K : Type u_2) [Field K] (f : PowerSeries K) : (LaurentSeries.powerSeriesEquivSubring K) f = โจ(HahnSeries.ofPowerSeries โค K) f, โฏโฉ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65