Loogle!
Result
Found 63 declarations mentioning Subsemigroup.map.
- Subsemigroup.map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (S : Subsemigroup M) : Subsemigroup N - Subsemigroup.map_id ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} [Mul M] (S : Subsemigroup M) : Subsemigroup.map (MulHom.id M) S = S - MulHom.srange_eq_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) : f.srange = Subsemigroup.map f †- Subsemigroup.map_bot ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) : Subsemigroup.map f ⥠= ⥠- Subsemigroup.map_injective_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) : Function.Injective (Subsemigroup.map f) - Subsemigroup.map_surjective_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) : Function.Surjective (Subsemigroup.map f) - Subsemigroup.comap_map_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {S : Subsemigroup N} {f : M ââ* N} : Subsemigroup.comap f (Subsemigroup.map f (Subsemigroup.comap f S)) = Subsemigroup.comap f S - Subsemigroup.map_comap_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {f : M ââ* N} : Subsemigroup.map f (Subsemigroup.comap f (Subsemigroup.map f S)) = Subsemigroup.map f S - Subsemigroup.map_comap_eq ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (S : Subsemigroup N) : Subsemigroup.map f (Subsemigroup.comap f S) = S â f.srange - MulHom.map_mclosure ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (s : Set M) : Subsemigroup.map f (Subsemigroup.closure s) = Subsemigroup.closure (âf '' s) - MulHom.map_srange ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul M] [Mul N] [Mul P] (g : N ââ* P) (f : M ââ* N) : Subsemigroup.map g f.srange = (g.comp f).srange - Subsemigroup.comap_map_eq_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) (S : Subsemigroup M) : Subsemigroup.comap f (Subsemigroup.map f S) = S - Subsemigroup.map_comap_eq_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) (S : Subsemigroup N) : Subsemigroup.map f (Subsemigroup.comap f S) = S - Subsemigroup.le_comap_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {f : M ââ* N} : S †Subsemigroup.comap f (Subsemigroup.map f S) - Subsemigroup.map_comap_le ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {S : Subsemigroup N} {f : M ââ* N} : Subsemigroup.map f (Subsemigroup.comap f S) †S - Subsemigroup.map_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} {P : Type u_3} [Mul M] [Mul N] [Mul P] (S : Subsemigroup M) (g : N ââ* P) (f : M ââ* N) : Subsemigroup.map g (Subsemigroup.map f S) = Subsemigroup.map (g.comp f) S - Subsemigroup.monotone_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} : Monotone (Subsemigroup.map f) - Subsemigroup.coe_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (S : Subsemigroup M) : â(Subsemigroup.map f S) = âf '' âS - Subsemigroup.gc_map_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) : GaloisConnection (Subsemigroup.map f) (Subsemigroup.comap f) - MulHom.srange.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) : f.srange = (Subsemigroup.map f â€).copy (Set.range âf) ⯠- Subsemigroup.map_comap_eq_self ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} {S : Subsemigroup N} (h : S †f.srange) : Subsemigroup.map f (Subsemigroup.comap f S) = S - Subsemigroup.map.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (S : Subsemigroup M) : Subsemigroup.map f S = { carrier := âf '' âS, mul_mem' := ⯠} - Subsemigroup.mem_map_of_mem ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) {S : Subsemigroup M} {x : M} (hx : x â S) : f x â Subsemigroup.map f S - Subsemigroup.map_iSup ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Sort u_5} (f : M ââ* N) (s : ι â Subsemigroup M) : Subsemigroup.map f (iSup s) = âš i, Subsemigroup.map f (s i) - Subsemigroup.comap_iInf_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M ââ* N} (hf : Function.Injective âf) (S : ι â Subsemigroup M) : Subsemigroup.comap f (âš i, Subsemigroup.map f (S i)) = iInf S - Subsemigroup.map_iInf_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M ââ* N} (hf : Function.Surjective âf) (S : ι â Subsemigroup N) : Subsemigroup.map f (âš i, Subsemigroup.comap f (S i)) = iInf S - Subsemigroup.map_iInf ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Sort u_5} [Nonempty ι] (f : M ââ* N) (hf : Function.Injective âf) (s : ι â Subsemigroup M) : Subsemigroup.map f (iInf s) = âš i, Subsemigroup.map f (s i) - Subsemigroup.map_strictMono_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) : StrictMono (Subsemigroup.map f) - Subsemigroup.comap_inf_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) (S T : Subsemigroup M) : Subsemigroup.comap f (Subsemigroup.map f S â Subsemigroup.map f T) = S â T - Subsemigroup.map_inf ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S T : Subsemigroup M) (f : M ââ* N) (hf : Function.Injective âf) : Subsemigroup.map f (S â T) = Subsemigroup.map f S â Subsemigroup.map f T - Subsemigroup.map_inf_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) (S T : Subsemigroup N) : Subsemigroup.map f (Subsemigroup.comap f S â Subsemigroup.comap f T) = S â T - Subsemigroup.mem_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} {S : Subsemigroup M} {y : N} : y â Subsemigroup.map f S â â x â S, f x = y - Subsemigroup.gciMapComap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) : GaloisCoinsertion (Subsemigroup.map f) (Subsemigroup.comap f) - Subsemigroup.giMapComap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) : GaloisInsertion (Subsemigroup.map f) (Subsemigroup.comap f) - Subsemigroup.map_equiv_top ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M â* N) : Subsemigroup.map âf †= †- Subsemigroup.le_comap_of_map_le ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {T : Subsemigroup N} {f : M ââ* N} : Subsemigroup.map f S †T â S †Subsemigroup.comap f T - Subsemigroup.map_le_of_le_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) {T : Subsemigroup N} {f : M ââ* N} : S †Subsemigroup.comap f T â Subsemigroup.map f S †T - Subsemigroup.map_le_iff_le_comap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} {S : Subsemigroup M} {T : Subsemigroup N} : Subsemigroup.map f S †T â S †Subsemigroup.comap f T - Subsemigroup.map_sup ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S T : Subsemigroup M) (f : M ââ* N) : Subsemigroup.map f (S â T) = Subsemigroup.map f S â Subsemigroup.map f T - Subsemigroup.mem_map_iff_mem ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) {S : Subsemigroup M} {x : M} : f x â Subsemigroup.map f S â x â S - Subsemigroup.apply_coe_mem_map ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (S : Subsemigroup M) (x : â¥S) : f âx â Subsemigroup.map f S - Subsemigroup.comap_iSup_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M ââ* N} (hf : Function.Injective âf) (S : ι â Subsemigroup M) : Subsemigroup.comap f (âš i, Subsemigroup.map f (S i)) = iSup S - Subsemigroup.map_iSup_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {ι : Type u_5} {f : M ââ* N} (hf : Function.Surjective âf) (S : ι â Subsemigroup N) : Subsemigroup.map f (âš i, Subsemigroup.comap f (S i)) = iSup S - MulHom.subsemigroupMap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (M' : Subsemigroup M) : â¥M' ââ* â¥(Subsemigroup.map f M') - Subsemigroup.map_le_map_iff_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) {S T : Subsemigroup M} : Subsemigroup.map f S †Subsemigroup.map f T â S †T - Subsemigroup.comap_sup_map_of_injective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) (S T : Subsemigroup M) : Subsemigroup.comap f (Subsemigroup.map f S â Subsemigroup.map f T) = S â T - Subsemigroup.map_sup_comap_of_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) (S T : Subsemigroup N) : Subsemigroup.map f (Subsemigroup.comap f S â Subsemigroup.comap f T) = S â T - Subsemigroup.equivMapOfInjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) (f : M ââ* N) (hf : Function.Injective âf) : â¥S â* â¥(Subsemigroup.map f S) - Subsemigroup.comap_equiv_eq_map_symm ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : N â* M) (K : Subsemigroup M) : Subsemigroup.comap (âf) K = Subsemigroup.map (âf.symm) K - Subsemigroup.map_equiv_eq_comap_symm ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M â* N) (K : Subsemigroup M) : Subsemigroup.map (âf) K = Subsemigroup.comap (âf.symm) K - Subsemigroup.mem_map_equiv ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M â* N} {K : Subsemigroup M} {x : N} : x â Subsemigroup.map (âf) K â f.symm x â K - Subsemigroup.gciMapComap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Injective âf) : Subsemigroup.gciMapComap hf = â¯.toGaloisCoinsertion ⯠- Subsemigroup.giMapComap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {f : M ââ* N} (hf : Function.Surjective âf) : Subsemigroup.giMapComap hf = â¯.toGaloisInsertion ⯠- Subsemigroup.le_prod_iff ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] {s : Subsemigroup M} {t : Subsemigroup N} {u : Subsemigroup (M à N)} : u †s.prod t â Subsemigroup.map (MulHom.fst M N) u †s â§ Subsemigroup.map (MulHom.snd M N) u †t - MulEquiv.subsemigroupMap ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M â* N) (S : Subsemigroup M) : â¥S â* â¥(Subsemigroup.map (âe) S) - Subsemigroup.equivMapOfInjective.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) (f : M ââ* N) (hf : Function.Injective âf) : S.equivMapOfInjective f hf = { toEquiv := Equiv.Set.image (âf) (âS) hf, map_mul' := ⯠} - MulHom.subsemigroupMap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (M' : Subsemigroup M) : f.subsemigroupMap M' = { toFun := fun x => âšf âx, â¯â©, map_mul' := ⯠} - MulHom.subsemigroupMap_surjective ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (M' : Subsemigroup M) : Function.Surjective â(f.subsemigroupMap M') - MulHom.subsemigroupMap_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (f : M ââ* N) (M' : Subsemigroup M) (x : â¥M') : â((f.subsemigroupMap M') x) = f âx - Subsemigroup.coe_equivMapOfInjective_apply ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (S : Subsemigroup M) (f : M ââ* N) (hf : Function.Injective âf) (x : â¥S) : â((S.equivMapOfInjective f hf) x) = f âx - MulEquiv.subsemigroupMap.eq_1 ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M â* N) (S : Subsemigroup M) : e.subsemigroupMap S = { toFun := fun x => âše âx, â¯â©, invFun := fun x => âše.symm âx, â¯â©, left_inv := â¯, right_inv := â¯, map_mul' := ⯠} - MulEquiv.subsemigroupMap_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M â* N) (S : Subsemigroup M) (x : â¥S) : â((e.subsemigroupMap S) x) = e âx - MulEquiv.subsemigroupMap_symm_apply_coe ð Mathlib.Algebra.Group.Subsemigroup.Operations
{M : Type u_1} {N : Type u_2} [Mul M] [Mul N] (e : M â* N) (S : Subsemigroup M) (x : â¥(Subsemigroup.map (âe) S)) : â((e.subsemigroupMap S).symm x) = e.symm âx
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
ðReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
ð"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
ð_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
ðReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
ð(?a -> ?b) -> List ?a -> List ?b
ðList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
ð|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allâ
andâ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
ð|- _ < _ â tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
ð Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ â _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65