Loogle!
Result
Found 24 declarations mentioning Subtype.map.
- Subtype.map π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} (f : Ξ± β Ξ²) (h : β (a : Ξ±), p a β q (f a)) : Subtype p β Subtype q - Subtype.map_involutive π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {p : Ξ± β Prop} {f : Ξ± β Ξ±} (h : β (a : Ξ±), p a β p (f a)) (hf : Function.Involutive f) : Function.Involutive (Subtype.map f h) - Subtype.map_id π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {p : Ξ± β Prop} {h : β (a : Ξ±), p a β p (id a)} : Subtype.map id h = id - Subtype.map_injective π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} {f : Ξ± β Ξ²} (h : β (a : Ξ±), p a β q (f a)) (hf : Function.Injective f) : Function.Injective (Subtype.map f h) - Subtype.map_coe π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} (f : Ξ± β Ξ²) (h : β (a : Ξ±), p a β q (f a)) (aβ : Subtype p) : β(Subtype.map f h aβ) = f βaβ - Subtype.map_def π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} (f : Ξ± β Ξ²) (h : β (a : Ξ±), p a β q (f a)) : Subtype.map f h = fun x => β¨f βx, β―β© - Subtype.map_comp π Mathlib.Data.Subtype
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {Ξ³ : Sort u_3} {p : Ξ± β Prop} {q : Ξ² β Prop} {r : Ξ³ β Prop} {x : Subtype p} (f : Ξ± β Ξ²) (h : β (a : Ξ±), p a β q (f a)) (g : Ξ² β Ξ³) (l : β (a : Ξ²), q a β r (g a)) : Subtype.map g l (Subtype.map f h x) = Subtype.map (g β f) β― x - Equiv.coe_subtypeEquiv_eq_map π Mathlib.Logic.Equiv.Basic
{X : Sort u_9} {Y : Sort u_10} {p : X β Prop} {q : Y β Prop} (e : X β Y) (h : β (x : X), p x β q (e x)) : β(e.subtypeEquiv h) = Subtype.map βe β― - Subtype.map.eq_1 π Mathlib.Data.Set.Image
{Ξ± : Sort u_1} {Ξ² : Sort u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} (f : Ξ± β Ξ²) (h : β (a : Ξ±), p a β q (f a)) (x : Subtype p) : Subtype.map f h x = β¨f βx, β―β© - Set.range_subtype_map π Mathlib.Data.Set.Image
{Ξ± : Type u_1} {Ξ² : Type u_2} {p : Ξ± β Prop} {q : Ξ² β Prop} (f : Ξ± β Ξ²) (h : β (x : Ξ±), p x β q (f x)) : Set.range (Subtype.map f h) = Subtype.val β»ΒΉ' (f '' {x | p x}) - List.filter_attach π Mathlib.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (p : Ξ± β Bool) : List.filter (fun x => p βx) l.attach = List.map (Subtype.map id β―) (List.filter p l).attach - List.filter_attach' π Mathlib.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (p : { a // a β l } β Bool) [DecidableEq Ξ±] : List.filter p l.attach = List.map (Subtype.map id β―) (List.filter (fun x => decide (β (h : x β l), p β¨x, hβ© = true)) l).attach - Multiset.filter_attach π Mathlib.Data.Multiset.Filter
{Ξ± : Type u_1} (s : Multiset Ξ±) (p : Ξ± β Prop) [DecidablePred p] : Multiset.filter (fun a => p βa) s.attach = Multiset.map (Subtype.map id β―) (Multiset.filter p s).attach - Multiset.filter_attach' π Mathlib.Data.Multiset.Filter
{Ξ± : Type u_1} (s : Multiset Ξ±) (p : { a // a β s } β Prop) [DecidableEq Ξ±] [DecidablePred p] : Multiset.filter p s.attach = Multiset.map (Subtype.map id β―) (Multiset.filter (fun x => β (h : x β s), p β¨x, hβ©) s).attach - Finset.filter_attach' π Mathlib.Data.Finset.Image
{Ξ± : Type u_1} [DecidableEq Ξ±] (s : Finset Ξ±) (p : { x // x β s } β Prop) [DecidablePred p] : Finset.filter p s.attach = Finset.map { toFun := Subtype.map id β―, inj' := β― } {x β s | β (h : x β s), p β¨x, hβ©}.attach - StarSubalgebra.inclusion_apply π Mathlib.Algebra.Star.Subalgebra
{R : Type u_2} {A : Type u_3} [CommSemiring R] [StarRing R] [Semiring A] [StarRing A] [Algebra R A] [StarModule R A] {Sβ Sβ : StarSubalgebra R A} (h : Sβ β€ Sβ) (aβ : β₯Sβ) : (StarSubalgebra.inclusion h) aβ = Subtype.map id h aβ - Continuous.subtype_map π Mathlib.Topology.Constructions
{X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {p : X β Prop} {f : X β Y} (h : Continuous f) {q : Y β Prop} (hpq : β (x : X), p x β q (f x)) : Continuous (Subtype.map f hpq) - Measurable.subtype_map π Mathlib.MeasureTheory.MeasurableSpace.Constructions
{Ξ± : Type u_1} {Ξ² : Type u_2} {m : MeasurableSpace Ξ±} {mΞ² : MeasurableSpace Ξ²} {f : Ξ± β Ξ²} {p : Ξ± β Prop} {q : Ξ² β Prop} (hf : Measurable f) (hpq : β (x : Ξ±), p x β q (f x)) : Measurable (Subtype.map f hpq) - unitary.map_apply π Mathlib.Algebra.Star.Unitary
{F : Type u_2} {R : Type u_3} {S : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) (aβ : β₯(unitary R)) : (unitary.map f) aβ = Subtype.map βf β― aβ - cfcHomSuperset_apply π Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unital
{R : Type u_1} {A : Type u_2} {p : A β Prop} [CommSemiring R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [TopologicalSpace A] [Algebra R A] [instCFC : ContinuousFunctionalCalculus R A p] {a : A} (ha : p a) {s : Set R} (hs : spectrum R a β s) (aβ : C(βs, R)) : (cfcHomSuperset ha hs) aβ = (cfcHom ha) (aβ.comp { toFun := Subtype.map id hs, continuous_toFun := β― }) - cfcβHomSuperset_apply π Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.NonUnital
{R : Type u_1} {A : Type u_2} {p : A β Prop} [CommSemiring R] [Nontrivial R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [NonUnitalRing A] [StarRing A] [TopologicalSpace A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [instCFCβ : NonUnitalContinuousFunctionalCalculus R A p] {a : A} (ha : p a) {s : Set R} (hs : quasispectrum R a β s) (aβ : ContinuousMapZero (βs) R) : (cfcβHomSuperset ha hs) aβ = (cfcβHom ha) (aβ.comp { toFun := Subtype.map id hs, continuous_toFun := β―, map_zero' := β― }) - SpectrumRestricts.starAlgHom_apply π Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Restrict
{R : Type u} {S : Type v} {A : Type w} [Semifield R] [StarRing R] [TopologicalSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Semifield S] [StarRing S] [TopologicalSpace S] [IsTopologicalSemiring S] [ContinuousStar S] [Ring A] [StarRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [StarModule R S] [ContinuousSMul R S] {a : A} (Ο : C(β(spectrum S a), S) βββ[S] A) {f : C(S, R)} (h : SpectrumRestricts a βf) (aβ : C(β(spectrum R a), R)) : (SpectrumRestricts.starAlgHom Ο h) aβ = Ο ({ toFun := β(StarAlgHom.ofId R S), continuous_toFun := β― }.comp (aβ.comp { toFun := Subtype.map βf β―, continuous_toFun := β― })) - QuasispectrumRestricts.nonUnitalStarAlgHom_apply π Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Restrict
{R : Type u} {S : Type v} {A : Type w} [Semifield R] [StarRing R] [TopologicalSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Field S] [StarRing S] [TopologicalSpace S] [IsTopologicalRing S] [ContinuousStar S] [NonUnitalRing A] [StarRing A] [Algebra R S] [Module R A] [Module S A] [IsScalarTower S A A] [SMulCommClass S A A] [IsScalarTower R S A] [StarModule R S] [ContinuousSMul R S] {a : A} (Ο : ContinuousMapZero (β(quasispectrum S a)) S ββββ[S] A) {f : C(S, R)} (h : QuasispectrumRestricts a βf) (aβ : ContinuousMapZero (β(quasispectrum R a)) R) : (QuasispectrumRestricts.nonUnitalStarAlgHom Ο h) aβ = Ο ({ toFun := β(StarAlgHom.ofId R S), continuous_toFun := β―, map_zero' := β― }.comp (aβ.comp { toFun := Subtype.map βf β―, continuous_toFun := β―, map_zero' := β― })) - Set.MapsTo.restrict.eq_1 π Mathlib.CategoryTheory.CofilteredSystem
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ²) (s : Set Ξ±) (t : Set Ξ²) (h : Set.MapsTo f s t) : Set.MapsTo.restrict f s t h = Subtype.map f h
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65