Loogle!
Result
Found 8 declarations mentioning TensorProduct and PiTensorProduct.
- PiTensorProduct.tmulEquiv ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (M : Type u_8) [AddCommMonoid M] [Module R M] : TensorProduct R (PiTensorProduct R fun x => M) (PiTensorProduct R fun x => M) โโ[R] PiTensorProduct R fun x => M - PiTensorProduct.tmulEquiv.eq_1 ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (M : Type u_8) [AddCommMonoid M] [Module R M] : PiTensorProduct.tmulEquiv R M = PiTensorProduct.tmulEquivDep R fun x => M - PiTensorProduct.tmulEquivDep ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (N : ฮน โ ฮนโ โ Type u_12) [(i : ฮน โ ฮนโ) โ AddCommMonoid (N i)] [(i : ฮน โ ฮนโ) โ Module R (N i)] : TensorProduct R (PiTensorProduct R fun iโ => N (Sum.inl iโ)) (PiTensorProduct R fun iโ => N (Sum.inr iโ)) โโ[R] PiTensorProduct R fun i => N i - PiTensorProduct.tmulEquiv_apply ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (M : Type u_8) [AddCommMonoid M] [Module R M] (a : ฮน โ M) (b : ฮนโ โ M) : (PiTensorProduct.tmulEquiv R M) (((PiTensorProduct.tprod R) fun i => a i) โโ[R] (PiTensorProduct.tprod R) fun i => b i) = (PiTensorProduct.tprod R) fun i => Sum.elim a b i - PiTensorProduct.tmulEquiv_symm_apply ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (M : Type u_8) [AddCommMonoid M] [Module R M] (a : ฮน โ ฮนโ โ M) : (PiTensorProduct.tmulEquiv R M).symm ((PiTensorProduct.tprod R) fun i => a i) = ((PiTensorProduct.tprod R) fun i => a (Sum.inl i)) โโ[R] (PiTensorProduct.tprod R) fun i => a (Sum.inr i) - PiTensorProduct.tmulEquivDep_apply ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (N : ฮน โ ฮนโ โ Type u_12) [(i : ฮน โ ฮนโ) โ AddCommMonoid (N i)] [(i : ฮน โ ฮนโ) โ Module R (N i)] (a : (iโ : ฮน) โ N (Sum.inl iโ)) (b : (iโ : ฮนโ) โ N (Sum.inr iโ)) : (PiTensorProduct.tmulEquivDep R N) (((PiTensorProduct.tprod R) fun iโ => a iโ) โโ[R] (PiTensorProduct.tprod R) fun iโ => b iโ) = โจโ[R] (i : ฮน โ ฮนโ), Sum.rec a b i - PiTensorProduct.tmulEquivDep_symm_apply ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (N : ฮน โ ฮนโ โ Type u_12) [(i : ฮน โ ฮนโ) โ AddCommMonoid (N i)] [(i : ฮน โ ฮนโ) โ Module R (N i)] (f : (i : ฮน โ ฮนโ) โ N i) : (PiTensorProduct.tmulEquivDep R N).symm (โจโ[R] (i : ฮน โ ฮนโ), f i) = ((PiTensorProduct.tprod R) fun iโ => f (Sum.inl iโ)) โโ[R] (PiTensorProduct.tprod R) fun iโ => f (Sum.inr iโ) - PiTensorProduct.tmulEquivDep.eq_1 ๐ Mathlib.LinearAlgebra.PiTensorProduct
{ฮน : Type u_1} {ฮนโ : Type u_2} (R : Type u_4) [CommSemiring R] (N : ฮน โ ฮนโ โ Type u_12) [(i : ฮน โ ฮนโ) โ AddCommMonoid (N i)] [(i : ฮน โ ฮนโ) โ Module R (N i)] : PiTensorProduct.tmulEquivDep R N = LinearEquiv.ofLinear (TensorProduct.lift { toFun := fun a => PiTensorProduct.lift ((PiTensorProduct.lift (MultilinearMap.currySumEquiv (PiTensorProduct.tprod R))) a), map_add' := โฏ, map_smul' := โฏ }) (PiTensorProduct.lift ((PiTensorProduct.tprod R).domCoprodDep (PiTensorProduct.tprod R))) โฏ โฏ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision e0654b0