Loogle!
Result
Found 19 declarations mentioning TensorProduct.AlgebraTensorModule.map.
- TensorProduct.AlgebraTensorModule.map_id ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] : TensorProduct.AlgebraTensorModule.map LinearMap.id LinearMap.id = LinearMap.id - TensorProduct.AlgebraTensorModule.map ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct R M N โโ[A] TensorProduct R P Q - TensorProduct.AlgebraTensorModule.map_one ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] : TensorProduct.AlgebraTensorModule.map 1 1 = 1 - TensorProduct.AlgebraTensorModule.map_tmul ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (g : N โโ[R] Q) (m : M) (n : N) : (TensorProduct.AlgebraTensorModule.map f g) (m โโ[R] n) = f m โโ[R] g n - TensorProduct.AlgebraTensorModule.map_comp ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} {P' : Type uP'} {Q' : Type uQ'} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [AddCommMonoid P'] [Module R P'] [Module A P'] [IsScalarTower R A P'] [AddCommMonoid Q'] [Module R Q'] (fโ : P โโ[A] P') (fโ : M โโ[A] P) (gโ : Q โโ[R] Q') (gโ : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (fโ โโ fโ) (gโ โโ gโ) = TensorProduct.AlgebraTensorModule.map fโ gโ โโ TensorProduct.AlgebraTensorModule.map fโ gโ - TensorProduct.AlgebraTensorModule.map_mul ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] (fโ fโ : M โโ[A] M) (gโ gโ : N โโ[R] N) : TensorProduct.AlgebraTensorModule.map (fโ * fโ) (gโ * gโ) = TensorProduct.AlgebraTensorModule.map fโ gโ * TensorProduct.AlgebraTensorModule.map fโ gโ - TensorProduct.AlgebraTensorModule.map_add_left ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (fโ fโ : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (fโ + fโ) g = TensorProduct.AlgebraTensorModule.map fโ g + TensorProduct.AlgebraTensorModule.map fโ g - TensorProduct.AlgebraTensorModule.map_smul_right ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (r : R) (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map f (r โข g) = r โข TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.map_add_right ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (gโ gโ : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map f (gโ + gโ) = TensorProduct.AlgebraTensorModule.map f gโ + TensorProduct.AlgebraTensorModule.map f gโ - TensorProduct.AlgebraTensorModule.map_smul_left ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (b : B) (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (b โข f) g = b โข TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.homTensorHomMap_apply ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (f : M โโ[A] P) (g : N โโ[R] Q) : (TensorProduct.AlgebraTensorModule.homTensorHomMap R A B M N P Q) (f โโ[R] g) = TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.rTensor_tensor ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) {M : Type uM} {N : Type uN} {P : Type uP} (P' : Type uP') [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module A P] [AddCommMonoid P'] [Module A P'] [Module R P] [IsScalarTower R A P] [Module R P'] [IsScalarTower R A P'] (g : P โโ[A] P') : LinearMap.rTensor (TensorProduct R M N) g = โ(TensorProduct.AlgebraTensorModule.assoc R A A P' M N) โโ TensorProduct.AlgebraTensorModule.map (LinearMap.rTensor M g) LinearMap.id โโ โ(TensorProduct.AlgebraTensorModule.assoc R A A P M N).symm - TensorProduct.AlgebraTensorModule.mapBilinear_apply ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (f : M โโ[A] P) (g : N โโ[R] Q) : ((TensorProduct.AlgebraTensorModule.mapBilinear R A B M N P Q) f) g = TensorProduct.AlgebraTensorModule.map f g - TensorProduct.directSum.eq_1 ๐ Mathlib.LinearAlgebra.DirectSum.TensorProduct
(R : Type u) [CommSemiring R] (S : Type u_1) [Semiring S] [Algebra R S] {ฮนโ : Type vโ} {ฮนโ : Type vโ} [DecidableEq ฮนโ] [DecidableEq ฮนโ] (Mโ : ฮนโ โ Type wโ) (Mโ : ฮนโ โ Type wโ) [(iโ : ฮนโ) โ AddCommMonoid (Mโ iโ)] [(iโ : ฮนโ) โ AddCommMonoid (Mโ iโ)] [(iโ : ฮนโ) โ Module R (Mโ iโ)] [(iโ : ฮนโ) โ Module R (Mโ iโ)] [(iโ : ฮนโ) โ Module S (Mโ iโ)] [โ (iโ : ฮนโ), IsScalarTower R S (Mโ iโ)] : TensorProduct.directSum R S Mโ Mโ = LinearEquiv.ofLinear (TensorProduct.AlgebraTensorModule.lift (DirectSum.toModule S ฮนโ ((DirectSum ฮนโ fun iโ => Mโ iโ) โโ[R] DirectSum (ฮนโ ร ฮนโ) fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) fun iโ => (DirectSum.toModule R ฮนโ (Mโ iโ โโ[S] DirectSum (ฮนโ ร ฮนโ) fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) fun iโ => (TensorProduct.AlgebraTensorModule.curry (DirectSum.lof S (ฮนโ ร ฮนโ) (fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) (iโ, iโ))).flip).flip)) (DirectSum.toModule S (ฮนโ ร ฮนโ) (TensorProduct R (DirectSum ฮนโ fun iโ => Mโ iโ) (DirectSum ฮนโ fun iโ => Mโ iโ)) fun i => TensorProduct.AlgebraTensorModule.map (DirectSum.lof S ฮนโ Mโ i.1) (DirectSum.lof R ฮนโ Mโ i.2)) โฏ โฏ - Module.endTensorEndAlgHom_apply ๐ Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {S : Type u_2} {A : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [CommSemiring S] [Semiring A] [AddCommMonoid M] [AddCommMonoid N] [Algebra R S] [Algebra S A] [Algebra R A] [Module R M] [Module S M] [Module A M] [Module R N] [IsScalarTower R A M] [IsScalarTower S A M] [IsScalarTower R S M] (f : Module.End A M) (g : Module.End R N) : Module.endTensorEndAlgHom (f โโ[R] g) = TensorProduct.AlgebraTensorModule.map f g - isBaseChange_tensorProduct_map ๐ Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vโ} {N : Type vโ} {S : Type vโ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {P : Type u_2} [AddCommMonoid P] [Module R P] (A : Type u_4) [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Module S M] [IsScalarTower R S M] [Module A N] [IsScalarTower S A N] [IsScalarTower R A N] {f : M โโ[S] N} (hf : IsBaseChange A f) : IsBaseChange A (TensorProduct.AlgebraTensorModule.map f LinearMap.id) - AdicCompletion.tensor_map_id_left_injective_of_injective ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u} [CommRing R] (I : Ideal R) [IsNoetherianRing R] {M : Type u} [AddCommGroup M] [Module R M] {N : Type u} [AddCommGroup N] [Module R N] {f : M โโ[R] N} [Module.Finite R M] [Module.Finite R N] (hf : Function.Injective โf) : Function.Injective โ(TensorProduct.AlgebraTensorModule.map LinearMap.id f) - AdicCompletion.ofTensorProduct_naturality ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] (f : M โโ[R] N) : AdicCompletion.map I f โโ AdicCompletion.ofTensorProduct I M = AdicCompletion.ofTensorProduct I N โโ TensorProduct.AlgebraTensorModule.map LinearMap.id f - AdicCompletion.tensor_map_id_left_eq_map ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u} [CommRing R] (I : Ideal R) [IsNoetherianRing R] {M : Type u} [AddCommGroup M] [Module R M] {N : Type u} [AddCommGroup N] [Module R N] (f : M โโ[R] N) [Module.Finite R M] [Module.Finite R N] : TensorProduct.AlgebraTensorModule.map LinearMap.id f = โ(AdicCompletion.ofTensorProductEquivOfFiniteNoetherian I N).symm โโ AdicCompletion.map I f โโ โ(AdicCompletion.ofTensorProductEquivOfFiniteNoetherian I M)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65