Loogle!
Result
Found 25 declarations mentioning TensorProduct.AlgebraTensorModule.map.
- TensorProduct.AlgebraTensorModule.map_id ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] : TensorProduct.AlgebraTensorModule.map LinearMap.id LinearMap.id = LinearMap.id - TensorProduct.AlgebraTensorModule.map ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct R M N โโ[A] TensorProduct R P Q - TensorProduct.AlgebraTensorModule.map_eq ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [AddCommMonoid Q] [Module R Q] (f : M โโ[R] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map f g = TensorProduct.map f g - TensorProduct.AlgebraTensorModule.map_one ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] : TensorProduct.AlgebraTensorModule.map 1 1 = 1 - TensorProduct.AlgebraTensorModule.map_tmul ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (g : N โโ[R] Q) (m : M) (n : N) : (TensorProduct.AlgebraTensorModule.map f g) (m โโ[R] n) = f m โโ[R] g n - TensorProduct.AlgebraTensorModule.map_comp ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} {P' : Type uP'} {Q' : Type uQ'} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [AddCommMonoid P'] [Module R P'] [Module A P'] [IsScalarTower R A P'] [AddCommMonoid Q'] [Module R Q'] (fโ : P โโ[A] P') (fโ : M โโ[A] P) (gโ : Q โโ[R] Q') (gโ : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (fโ โโ fโ) (gโ โโ gโ) = TensorProduct.AlgebraTensorModule.map fโ gโ โโ TensorProduct.AlgebraTensorModule.map fโ gโ - TensorProduct.AlgebraTensorModule.map_mul ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] (fโ fโ : M โโ[A] M) (gโ gโ : N โโ[R] N) : TensorProduct.AlgebraTensorModule.map (fโ * fโ) (gโ * gโ) = TensorProduct.AlgebraTensorModule.map fโ gโ * TensorProduct.AlgebraTensorModule.map fโ gโ - TensorProduct.AlgebraTensorModule.map_add_left ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (fโ fโ : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (fโ + fโ) g = TensorProduct.AlgebraTensorModule.map fโ g + TensorProduct.AlgebraTensorModule.map fโ g - TensorProduct.AlgebraTensorModule.map_smul_right ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (r : R) (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map f (r โข g) = r โข TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.map_add_right ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] (f : M โโ[A] P) (gโ gโ : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map f (gโ + gโ) = TensorProduct.AlgebraTensorModule.map f gโ + TensorProduct.AlgebraTensorModule.map f gโ - TensorProduct.AlgebraTensorModule.map_smul_left ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (b : B) (f : M โโ[A] P) (g : N โโ[R] Q) : TensorProduct.AlgebraTensorModule.map (b โข f) g = b โข TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.homTensorHomMap_apply ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (f : M โโ[A] P) (g : N โโ[R] Q) : (TensorProduct.AlgebraTensorModule.homTensorHomMap R A B M N P Q) (f โโ[R] g) = TensorProduct.AlgebraTensorModule.map f g - TensorProduct.AlgebraTensorModule.rTensor_tensor ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
(R : Type uR) (A : Type uA) {M : Type uM} {N : Type uN} {P : Type uP} (P' : Type uP') [CommSemiring R] [CommSemiring A] [Algebra R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module A P] [AddCommMonoid P'] [Module A P'] [Module R P] [IsScalarTower R A P] [Module R P'] [IsScalarTower R A P'] (g : P โโ[A] P') : LinearMap.rTensor (TensorProduct R M N) g = โ(TensorProduct.AlgebraTensorModule.assoc R A A P' M N) โโ TensorProduct.AlgebraTensorModule.map (LinearMap.rTensor M g) LinearMap.id โโ โ(TensorProduct.AlgebraTensorModule.assoc R A A P M N).symm - TensorProduct.AlgebraTensorModule.mapBilinear_apply ๐ Mathlib.LinearAlgebra.TensorProduct.Tower
{R : Type uR} {A : Type uA} {B : Type uB} {M : Type uM} {N : Type uN} {P : Type uP} {Q : Type uQ} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [AddCommMonoid N] [Module R N] [AddCommMonoid P] [Module R P] [Module A P] [IsScalarTower R A P] [AddCommMonoid Q] [Module R Q] [Module B P] [IsScalarTower R B P] [SMulCommClass A B P] (f : M โโ[A] P) (g : N โโ[R] Q) : ((TensorProduct.AlgebraTensorModule.mapBilinear R A B M N P Q) f) g = TensorProduct.AlgebraTensorModule.map f g - TensorProduct.directSum.eq_1 ๐ Mathlib.LinearAlgebra.DirectSum.TensorProduct
(R : Type u) [CommSemiring R] (S : Type u_1) [Semiring S] [Algebra R S] {ฮนโ : Type vโ} {ฮนโ : Type vโ} [DecidableEq ฮนโ] [DecidableEq ฮนโ] (Mโ : ฮนโ โ Type wโ) (Mโ : ฮนโ โ Type wโ) [(iโ : ฮนโ) โ AddCommMonoid (Mโ iโ)] [(iโ : ฮนโ) โ AddCommMonoid (Mโ iโ)] [(iโ : ฮนโ) โ Module R (Mโ iโ)] [(iโ : ฮนโ) โ Module R (Mโ iโ)] [(iโ : ฮนโ) โ Module S (Mโ iโ)] [โ (iโ : ฮนโ), IsScalarTower R S (Mโ iโ)] : TensorProduct.directSum R S Mโ Mโ = LinearEquiv.ofLinear (TensorProduct.AlgebraTensorModule.lift (DirectSum.toModule S ฮนโ ((DirectSum ฮนโ fun iโ => Mโ iโ) โโ[R] DirectSum (ฮนโ ร ฮนโ) fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) fun iโ => (DirectSum.toModule R ฮนโ (Mโ iโ โโ[S] DirectSum (ฮนโ ร ฮนโ) fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) fun iโ => (TensorProduct.AlgebraTensorModule.curry (DirectSum.lof S (ฮนโ ร ฮนโ) (fun i => TensorProduct R (Mโ i.1) (Mโ i.2)) (iโ, iโ))).flip).flip)) (DirectSum.toModule S (ฮนโ ร ฮนโ) (TensorProduct R (DirectSum ฮนโ fun iโ => Mโ iโ) (DirectSum ฮนโ fun iโ => Mโ iโ)) fun i => TensorProduct.AlgebraTensorModule.map (DirectSum.lof S ฮนโ Mโ i.1) (DirectSum.lof R ฮนโ Mโ i.2)) โฏ โฏ - Algebra.TensorProduct.toLinearMap_map ๐ Mathlib.RingTheory.TensorProduct.Maps
{R : Type uR} {S : Type uS} {A : Type uA} {B : Type uB} {C : Type uC} {D : Type uD} [CommSemiring R] [CommSemiring S] [Algebra R S] [Semiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] [Algebra S C] [IsScalarTower R S C] [Semiring D] [Algebra R D] (f : A โโ[S] C) (g : B โโ[R] D) : (Algebra.TensorProduct.map f g).toLinearMap = TensorProduct.AlgebraTensorModule.map f.toLinearMap g.toLinearMap - Module.endTensorEndAlgHom_apply ๐ Mathlib.RingTheory.TensorProduct.Maps
{R : Type u_1} {S : Type u_2} {A : Type u_3} {M : Type u_4} {N : Type u_5} [CommSemiring R] [CommSemiring S] [Semiring A] [AddCommMonoid M] [AddCommMonoid N] [Algebra R S] [Algebra S A] [Algebra R A] [Module R M] [Module S M] [Module A M] [Module R N] [IsScalarTower R A M] [IsScalarTower S A M] [IsScalarTower R S M] (f : Module.End A M) (g : Module.End R N) : Module.endTensorEndAlgHom (f โโ[R] g) = TensorProduct.AlgebraTensorModule.map f g - isBaseChange_tensorProduct_map ๐ Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} {M : Type vโ} {N : Type vโ} {S : Type vโ} [AddCommMonoid M] [AddCommMonoid N] [CommSemiring R] [CommSemiring S] [Algebra R S] [Module R M] [Module R N] [Module S N] [IsScalarTower R S N] {P : Type u_2} [AddCommMonoid P] [Module R P] (A : Type u_4) [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [Module S M] [IsScalarTower R S M] [Module A N] [IsScalarTower S A N] [IsScalarTower R A N] {f : M โโ[S] N} (hf : IsBaseChange A f) : IsBaseChange A (TensorProduct.AlgebraTensorModule.map f LinearMap.id) - TensorProduct.counit_def ๐ Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid A] [AddCommMonoid B] [Algebra R S] [Module R A] [Module S A] [Module R B] [IsScalarTower R S A] [CoalgebraStruct R B] [CoalgebraStruct S A] : CoalgebraStruct.counit = โ(TensorProduct.AlgebraTensorModule.rid R S S) โโ TensorProduct.AlgebraTensorModule.map CoalgebraStruct.counit CoalgebraStruct.counit - Coalgebra.TensorProduct.map_toLinearMap ๐ Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_5} {S : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} {Q : Type u_10} [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Module S M] [IsScalarTower R S M] [Coalgebra S M] [Module S N] [IsScalarTower R S N] [Coalgebra S N] [Coalgebra R P] [Coalgebra R Q] (f : M โโc[S] N) (g : P โโc[R] Q) : โ(Coalgebra.TensorProduct.map f g) = TensorProduct.AlgebraTensorModule.map โf โg - TensorProduct.comul_def ๐ Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid A] [AddCommMonoid B] [Algebra R S] [Module R A] [Module S A] [Module R B] [IsScalarTower R S A] [CoalgebraStruct R B] [CoalgebraStruct S A] : CoalgebraStruct.comul = โ(TensorProduct.AlgebraTensorModule.tensorTensorTensorComm R S R S A A B B) โโ TensorProduct.AlgebraTensorModule.map CoalgebraStruct.comul CoalgebraStruct.comul - TensorProduct.antipode_def ๐ Mathlib.RingTheory.HopfAlgebra.TensorProduct
{R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [HopfAlgebra R A] [HopfAlgebra S B] [Algebra R B] [IsScalarTower R S B] : HopfAlgebraStruct.antipode S = TensorProduct.AlgebraTensorModule.map (HopfAlgebraStruct.antipode S) (HopfAlgebraStruct.antipode R) - AdicCompletion.ofTensorProduct_naturality ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u_1} [CommRing R] (I : Ideal R) {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] (f : M โโ[R] N) : AdicCompletion.map I f โโ AdicCompletion.ofTensorProduct I M = AdicCompletion.ofTensorProduct I N โโ TensorProduct.AlgebraTensorModule.map LinearMap.id f - AdicCompletion.tensor_map_id_left_injective_of_injective ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u} [CommRing R] (I : Ideal R) [IsNoetherianRing R] {M : Type u} [AddCommGroup M] [Module R M] {N : Type u} [AddCommGroup N] [Module R N] {f : M โโ[R] N} [Module.Finite R M] [Module.Finite R N] (hf : Function.Injective โf) : Function.Injective โ(TensorProduct.AlgebraTensorModule.map LinearMap.id f) - AdicCompletion.tensor_map_id_left_eq_map ๐ Mathlib.RingTheory.AdicCompletion.AsTensorProduct
{R : Type u} [CommRing R] (I : Ideal R) [IsNoetherianRing R] {M : Type u} [AddCommGroup M] [Module R M] {N : Type u} [AddCommGroup N] [Module R N] (f : M โโ[R] N) [Module.Finite R M] [Module.Finite R N] : TensorProduct.AlgebraTensorModule.map LinearMap.id f = โ(AdicCompletion.ofTensorProductEquivOfFiniteNoetherian I N).symm โโ AdicCompletion.map I f โโ โ(AdicCompletion.ofTensorProductEquivOfFiniteNoetherian I M)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c