Loogle!
Result
Found 114 declarations mentioning TensorProduct.map.
- TensorProduct.map π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct R M N ββ[R] TensorProduct R P Q - TensorProduct.map_id π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] : TensorProduct.map LinearMap.id LinearMap.id = LinearMap.id - LinearMap.lTensor_def π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N ββ[R] P) : LinearMap.lTensor M f = TensorProduct.map LinearMap.id f - LinearMap.rTensor_def π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N ββ[R] P) : LinearMap.rTensor M f = TensorProduct.map f LinearMap.id - LinearMap.lTensor.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N ββ[R] P) : LinearMap.lTensor M f = TensorProduct.map LinearMap.id f - LinearMap.rTensor.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N ββ[R] P) : LinearMap.rTensor M f = TensorProduct.map f LinearMap.id - LinearMap.lTensor_comp_rTensor π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : LinearMap.lTensor P g ββ LinearMap.rTensor N f = TensorProduct.map f g - LinearMap.rTensor_comp_lTensor π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : LinearMap.rTensor Q f ββ LinearMap.lTensor M g = TensorProduct.map f g - TensorProduct.map_one π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] : TensorProduct.map 1 1 = 1 - TensorProduct.map_tmul π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) (m : M) (n : N) : (TensorProduct.map f g) (m ββ[R] n) = f m ββ[R] g n - LinearMap.lTensor_comp_map π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R P] (g' : Q ββ[R] S) (f : M ββ[R] P) (g : N ββ[R] Q) : LinearMap.lTensor P g' ββ TensorProduct.map f g = TensorProduct.map f (g' ββ g) - LinearMap.map_comp_lTensor π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) (g' : S ββ[R] N) : TensorProduct.map f g ββ LinearMap.lTensor M g' = TensorProduct.map f (g ββ g') - LinearMap.map_comp_rTensor π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) (f' : S ββ[R] M) : TensorProduct.map f g ββ LinearMap.rTensor N f' = TensorProduct.map (f ββ f') g - LinearMap.rTensor_comp_map π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] (M : Type u_5) {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R P] (f' : P ββ[R] S) (f : M ββ[R] P) (g : N ββ[R] Q) : LinearMap.rTensor Q f' ββ TensorProduct.map f g = TensorProduct.map (f' ββ f) g - TensorProduct.map_zero_left π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (g : N ββ[R] Q) : TensorProduct.map 0 g = 0 - TensorProduct.map_zero_right π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) : TensorProduct.map f 0 = 0 - TensorProduct.map_comp π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] {P' : Type u_11} {Q' : Type u_12} [AddCommMonoid P'] [Module R P'] [AddCommMonoid Q'] [Module R Q'] (fβ : P ββ[R] P') (fβ : M ββ[R] P) (gβ : Q ββ[R] Q') (gβ : N ββ[R] Q) : TensorProduct.map (fβ ββ fβ) (gβ ββ gβ) = TensorProduct.map fβ gβ ββ TensorProduct.map fβ gβ - TensorProduct.mapIncl.eq_1 π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_7} {Q : Type u_8} [AddCommMonoid P] [AddCommMonoid Q] [Module R Q] [Module R P] (p : Submodule R P) (q : Submodule R Q) : TensorProduct.mapIncl p q = TensorProduct.map p.subtype q.subtype - TensorProduct.map_range_eq_span_tmul π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : LinearMap.range (TensorProduct.map f g) = Submodule.span R {t | β m n, f m ββ[R] g n = t} - TensorProduct.map_comp_comm_eq π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.map f g ββ β(TensorProduct.comm R N M) = β(TensorProduct.comm R Q P) ββ TensorProduct.map g f - TensorProduct.lift_comp_map π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] {Q' : Type u_12} [AddCommMonoid Q'] [Module R Q'] (i : P ββ[R] Q ββ[R] Q') (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.lift i ββ TensorProduct.map f g = TensorProduct.lift ((i ββ f).complβ g) - TensorProduct.map_pow π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (f : M ββ[R] M) (g : N ββ[R] N) (n : β) : TensorProduct.map f g ^ n = TensorProduct.map (f ^ n) (g ^ n) - TensorProduct.map_add_left π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (fβ fβ : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.map (fβ + fβ) g = TensorProduct.map fβ g + TensorProduct.map fβ g - TensorProduct.map_add_right π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (gβ gβ : N ββ[R] Q) : TensorProduct.map f (gβ + gβ) = TensorProduct.map f gβ + TensorProduct.map f gβ - TensorProduct.map_smul_left π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (r : R) (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.map (r β’ f) g = r β’ TensorProduct.map f g - TensorProduct.map_smul_right π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (r : R) (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.map f (r β’ g) = r β’ TensorProduct.map f g - TensorProduct.map_mul π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (fβ fβ : M ββ[R] M) (gβ gβ : N ββ[R] N) : TensorProduct.map (fβ * fβ) (gβ * gβ) = TensorProduct.map fβ gβ * TensorProduct.map fβ gβ - TensorProduct.map_comm π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) (x : TensorProduct R N M) : (TensorProduct.map f g) ((TensorProduct.comm R N M) x) = (TensorProduct.comm R Q P) ((TensorProduct.map g f) x) - TensorProduct.mapβ_apply_tmul π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] (f : M ββ[R] P ββ[R] Q) (g : N ββ[R] S ββ[R] T) (m : M) (n : N) : (TensorProduct.mapβ f g) (m ββ[R] n) = TensorProduct.map (f m) (g n) - TensorProduct.homTensorHomMap_apply π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : (TensorProduct.homTensorHomMap R M N P Q) (f ββ[R] g) = TensorProduct.map f g - TensorProduct.mapBilinear_apply π Mathlib.LinearAlgebra.TensorProduct.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : ((TensorProduct.mapBilinear R M N P Q) f) g = TensorProduct.map f g - TensorProduct.map_map_comp_assoc_eq π Mathlib.LinearAlgebra.TensorProduct.Associator
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] (f : M ββ[R] Q) (g : N ββ[R] S) (h : P ββ[R] T) : TensorProduct.map f (TensorProduct.map g h) ββ β(TensorProduct.assoc R M N P) = β(TensorProduct.assoc R Q S T) ββ TensorProduct.map (TensorProduct.map f g) h - TensorProduct.map_map_comp_assoc_symm_eq π Mathlib.LinearAlgebra.TensorProduct.Associator
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] (f : M ββ[R] Q) (g : N ββ[R] S) (h : P ββ[R] T) : TensorProduct.map (TensorProduct.map f g) h ββ β(TensorProduct.assoc R M N P).symm = β(TensorProduct.assoc R Q S T).symm ββ TensorProduct.map f (TensorProduct.map g h) - TensorProduct.tensorTensorTensorComm_comp_map π Mathlib.LinearAlgebra.TensorProduct.Associator
(R : Type u_1) [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] {V : Type u_13} {W : Type u_14} [AddCommMonoid V] [AddCommMonoid W] [Module R V] [Module R W] (f : M ββ[R] S) (g : N ββ[R] T) (h : P ββ[R] V) (j : Q ββ[R] W) : β(TensorProduct.tensorTensorTensorComm R S T V W) ββ TensorProduct.map (TensorProduct.map f g) (TensorProduct.map h j) = TensorProduct.map (TensorProduct.map f h) (TensorProduct.map g j) ββ β(TensorProduct.tensorTensorTensorComm R M N P Q) - TensorProduct.map_map_assoc π Mathlib.LinearAlgebra.TensorProduct.Associator
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] (f : M ββ[R] Q) (g : N ββ[R] S) (h : P ββ[R] T) (x : TensorProduct R (TensorProduct R M N) P) : (TensorProduct.map f (TensorProduct.map g h)) ((TensorProduct.assoc R M N P) x) = (TensorProduct.assoc R Q S T) ((TensorProduct.map (TensorProduct.map f g) h) x) - TensorProduct.map_map_assoc_symm π Mathlib.LinearAlgebra.TensorProduct.Associator
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} {S : Type u_9} {T : Type u_10} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [AddCommMonoid S] [AddCommMonoid T] [Module R M] [Module R N] [Module R Q] [Module R S] [Module R T] [Module R P] (f : M ββ[R] Q) (g : N ββ[R] S) (h : P ββ[R] T) (x : TensorProduct R M (TensorProduct R N P)) : (TensorProduct.map (TensorProduct.map f g) h) ((TensorProduct.assoc R M N P).symm x) = (TensorProduct.assoc R Q S T).symm ((TensorProduct.map f (TensorProduct.map g h)) x) - TensorProduct.Algebra.linearMap_comp_mul' π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] : Algebra.linearMap R (TensorProduct R A B) ββ LinearMap.mul' R R = TensorProduct.map (Algebra.linearMap R A) (Algebra.linearMap R B) - TensorProduct.Algebra.mul'_comp_tensorTensorTensorComm π Mathlib.RingTheory.TensorProduct.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] : LinearMap.mul' R (TensorProduct R A B) ββ β(TensorProduct.tensorTensorTensorComm R A A B B) = TensorProduct.map (LinearMap.mul' R A) (LinearMap.mul' R B) - ModuleCat.MonoidalCategory.instMonoidalCategoryStruct_tensorHom π Mathlib.Algebra.Category.ModuleCat.Monoidal.Basic
{R : Type u} [CommRing R] {Xββ Yββ Xββ Yββ : ModuleCat R} (f : Xββ βΆ Yββ) (g : Xββ βΆ Yββ) : CategoryTheory.MonoidalCategoryStruct.tensorHom f g = ModuleCat.ofHom (TensorProduct.map (ModuleCat.Hom.hom f) (ModuleCat.Hom.hom g)) - TensorProduct.exists_finite_submodule_of_finite' π Mathlib.LinearAlgebra.TensorProduct.Finiteness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {Mβ : Submodule R M} {Nβ : Submodule R N} (s : Set (TensorProduct R β₯Mβ β₯Nβ)) (hs : s.Finite) : β M' N', β (hM : M' β€ Mβ) (hN : N' β€ Nβ), Module.Finite R β₯M' β§ Module.Finite R β₯N' β§ s β β(LinearMap.range (TensorProduct.map (Submodule.inclusion hM) (Submodule.inclusion hN))) - TensorProduct.counit_def π Mathlib.RingTheory.Coalgebra.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] : CoalgebraStruct.counit = LinearMap.mul' R R ββ TensorProduct.map CoalgebraStruct.counit CoalgebraStruct.counit - TensorProduct.instCoalgebraStruct_counit π Mathlib.RingTheory.Coalgebra.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] : CoalgebraStruct.counit = LinearMap.mul' R R ββ TensorProduct.map CoalgebraStruct.counit CoalgebraStruct.counit - Prod.comul_comp_fst π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] : CoalgebraStruct.comul ββ LinearMap.fst R A B = TensorProduct.map (LinearMap.fst R A B) (LinearMap.fst R A B) ββ CoalgebraStruct.comul - Prod.comul_comp_snd π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] : CoalgebraStruct.comul ββ LinearMap.snd R A B = TensorProduct.map (LinearMap.snd R A B) (LinearMap.snd R A B) ββ CoalgebraStruct.comul - Finsupp.comul_comp_lapply π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ΞΉ) : CoalgebraStruct.comul ββ Finsupp.lapply i = TensorProduct.map (Finsupp.lapply i) (Finsupp.lapply i) ββ CoalgebraStruct.comul - Prod.comul_comp_inl π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] : CoalgebraStruct.comul ββ LinearMap.inl R A B = TensorProduct.map (LinearMap.inl R A B) (LinearMap.inl R A B) ββ CoalgebraStruct.comul - Prod.comul_comp_inr π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] : CoalgebraStruct.comul ββ LinearMap.inr R A B = TensorProduct.map (LinearMap.inr R A B) (LinearMap.inr R A B) ββ CoalgebraStruct.comul - DFinsupp.comul_comp_lapply π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : ΞΉ β Type w) [DecidableEq ΞΉ] [CommSemiring R] [(i : ΞΉ) β AddCommMonoid (A i)] [(i : ΞΉ) β Module R (A i)] [(i : ΞΉ) β Coalgebra R (A i)] (i : ΞΉ) : CoalgebraStruct.comul ββ DFinsupp.lapply i = TensorProduct.map (DFinsupp.lapply i) (DFinsupp.lapply i) ββ CoalgebraStruct.comul - Finsupp.comul_comp_lsingle π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ΞΉ) : CoalgebraStruct.comul ββ Finsupp.lsingle i = TensorProduct.map (Finsupp.lsingle i) (Finsupp.lsingle i) ββ CoalgebraStruct.comul - DFinsupp.comul_comp_lsingle π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : ΞΉ β Type w) [DecidableEq ΞΉ] [CommSemiring R] [(i : ΞΉ) β AddCommMonoid (A i)] [(i : ΞΉ) β Module R (A i)] [(i : ΞΉ) β Coalgebra R (A i)] (i : ΞΉ) : CoalgebraStruct.comul ββ DFinsupp.lsingle i = TensorProduct.map (DFinsupp.lsingle i) (DFinsupp.lsingle i) ββ CoalgebraStruct.comul - TensorProduct.comul_def π Mathlib.RingTheory.Coalgebra.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] : CoalgebraStruct.comul = β(TensorProduct.tensorTensorTensorComm R A A B B) ββ TensorProduct.map CoalgebraStruct.comul CoalgebraStruct.comul - TensorProduct.instCoalgebraStruct_comul π Mathlib.RingTheory.Coalgebra.Basic
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] : CoalgebraStruct.comul = β(TensorProduct.tensorTensorTensorComm R A A B B) ββ TensorProduct.map CoalgebraStruct.comul CoalgebraStruct.comul - Finsupp.comul_single π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ΞΉ) (a : A) : (CoalgebraStruct.comul funβ | i => a) = (TensorProduct.map (Finsupp.lsingle i) (Finsupp.lsingle i)) (CoalgebraStruct.comul a) - DFinsupp.comul_single π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (ΞΉ : Type v) (A : ΞΉ β Type w) [DecidableEq ΞΉ] [CommSemiring R] [(i : ΞΉ) β AddCommMonoid (A i)] [(i : ΞΉ) β Module R (A i)] [(i : ΞΉ) β Coalgebra R (A i)] (i : ΞΉ) (a : A i) : (CoalgebraStruct.comul funβ | i => a) = (TensorProduct.map (DFinsupp.lsingle i) (DFinsupp.lsingle i)) (CoalgebraStruct.comul a) - Prod.comul_apply π Mathlib.RingTheory.Coalgebra.Basic
(R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] (r : A Γ B) : CoalgebraStruct.comul r = (TensorProduct.map (LinearMap.inl R A B) (LinearMap.inl R A B)) (CoalgebraStruct.comul r.1) + (TensorProduct.map (LinearMap.inr R A B) (LinearMap.inr R A B)) (CoalgebraStruct.comul r.2) - CoalgHom.map_comp_comul π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (self : A ββc[R] B) : TensorProduct.map self.toLinearMap self.toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ self.toLinearMap - CoalgHomClass.map_comp_comul π Mathlib.RingTheory.Coalgebra.Hom
{F : Type u_1} {R : outParam (Type u_2)} {A : outParam (Type u_3)} {B : outParam (Type u_4)} {instβ : CommSemiring R} {instβΒΉ : AddCommMonoid A} {instβΒ² : Module R A} {instβΒ³ : AddCommMonoid B} {instββ΄ : Module R B} {instββ΅ : CoalgebraStruct R A} {instββΆ : CoalgebraStruct R B} {instββ· : FunLike F A B} [self : CoalgHomClass F R A B] (f : F) : TensorProduct.map βf βf ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ βf - CoalgHom.mk π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (toLinearMap : A ββ[R] B) (counit_comp : CoalgebraStruct.counit ββ toLinearMap = CoalgebraStruct.counit) (map_comp_comul : TensorProduct.map toLinearMap toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ toLinearMap) : A ββc[R] B - CoalgHom.coe_mk π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A ββ[R] B} (h : CoalgebraStruct.counit ββ f = CoalgebraStruct.counit) (hβ : TensorProduct.map f f ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ f) : β{ toLinearMap := f, counit_comp := h, map_comp_comul := hβ } = βf - CoalgHomClass.map_comp_comul_apply π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) (x : A) : (TensorProduct.map βf βf) (CoalgebraStruct.comul x) = CoalgebraStruct.comul (f x) - CoalgHomClass.mk π Mathlib.RingTheory.Coalgebra.Hom
{F : Type u_1} {R : outParam (Type u_2)} {A : outParam (Type u_3)} {B : outParam (Type u_4)} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [toSemilinearMapClass : SemilinearMapClass F (RingHom.id R) A B] (counit_comp : β (f : F), CoalgebraStruct.counit ββ βf = CoalgebraStruct.counit) (map_comp_comul : β (f : F), TensorProduct.map βf βf ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ βf) : CoalgHomClass F R A B - CoalgHom.coe_linearMap_mk π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A ββ[R] B} (h : CoalgebraStruct.counit ββ f = CoalgebraStruct.counit) (hβ : TensorProduct.map f f ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ f) : β{ toLinearMap := f, counit_comp := h, map_comp_comul := hβ } = f - CoalgHom.coe_mks π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A β B} (hβ : β (x y : A), f (x + y) = f x + f y) (hβ : β (m : R) (x : A), { toFun := f, map_add' := hβ }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := f, map_add' := hβ }.toFun x) (hβ : CoalgebraStruct.counit ββ { toFun := f, map_add' := hβ, map_smul' := hβ } = CoalgebraStruct.counit) (hβ : TensorProduct.map { toFun := f, map_add' := hβ, map_smul' := hβ } { toFun := f, map_add' := hβ, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := f, map_add' := hβ, map_smul' := hβ }) : β{ toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ } = f - CoalgHom.mk.injEq π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (toLinearMap : A ββ[R] B) (counit_comp : CoalgebraStruct.counit ββ toLinearMap = CoalgebraStruct.counit) (map_comp_comul : TensorProduct.map toLinearMap toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ toLinearMap) (toLinearMapβ : A ββ[R] B) (counit_compβ : CoalgebraStruct.counit ββ toLinearMapβ = CoalgebraStruct.counit) (map_comp_comulβ : TensorProduct.map toLinearMapβ toLinearMapβ ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ toLinearMapβ) : ({ toLinearMap := toLinearMap, counit_comp := counit_comp, map_comp_comul := map_comp_comul } = { toLinearMap := toLinearMapβ, counit_comp := counit_compβ, map_comp_comul := map_comp_comulβ }) = (toLinearMap = toLinearMapβ) - CoalgHom.mk_coe π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A ββc[R] B} (hβ : β (x y : A), f (x + y) = f x + f y) (hβ : β (m : R) (x : A), { toFun := βf, map_add' := hβ }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := βf, map_add' := hβ }.toFun x) (hβ : CoalgebraStruct.counit ββ { toFun := βf, map_add' := hβ, map_smul' := hβ } = CoalgebraStruct.counit) (hβ : TensorProduct.map { toFun := βf, map_add' := hβ, map_smul' := hβ } { toFun := βf, map_add' := hβ, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := βf, map_add' := hβ, map_smul' := hβ }) : { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ } = f - CoalgHom.mk.sizeOf_spec π Mathlib.RingTheory.Coalgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [SizeOf R] [SizeOf A] [SizeOf B] (toLinearMap : A ββ[R] B) (counit_comp : CoalgebraStruct.counit ββ toLinearMap = CoalgebraStruct.counit) (map_comp_comul : TensorProduct.map toLinearMap toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ toLinearMap) : sizeOf { toLinearMap := toLinearMap, counit_comp := counit_comp, map_comp_comul := map_comp_comul } = 1 + sizeOf toLinearMap + sizeOf counit_comp + sizeOf map_comp_comul - TensorProduct.congr.eq_1 π Mathlib.RingTheory.Coalgebra.Equiv
{R : Type u_1} [CommSemiring R] {M : Type u_5} {N : Type u_6} {P : Type u_7} {Q : Type u_8} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R Q] [Module R P] (f : M ββ[R] P) (g : N ββ[R] Q) : TensorProduct.congr f g = LinearEquiv.ofLinear (TensorProduct.map βf βg) (TensorProduct.map βf.symm βg.symm) β― β― - CoalgEquiv.coe_mk π Mathlib.RingTheory.Coalgebra.Equiv
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A β B} {h : β (x y : A), f (x + y) = f x + f y} {hβ : β (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := f, map_add' := h }.toFun x} {hβ : CoalgebraStruct.counit ββ { toFun := f, map_add' := h, map_smul' := hβ } = CoalgebraStruct.counit} {hβ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := hβ } { toFun := f, map_add' := h, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := f, map_add' := h, map_smul' := hβ }} {hβ : B β A} {hβ : Function.LeftInverse hβ { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun} {hβ : Function.RightInverse hβ { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun} : β{ toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, invFun := hβ, left_inv := hβ, right_inv := hβ } = f - BialgHom.ofAlgHom π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ββ[R] B) (counit_comp : CoalgebraStruct.counit ββ f.toLinearMap = CoalgebraStruct.counit) (map_comp_comul : TensorProduct.map f.toLinearMap f.toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ f.toLinearMap) : A ββc[R] B - BialgHom.ofAlgHom_apply π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A ββ[R] B) (counit_comp : CoalgebraStruct.counit ββ f.toLinearMap = CoalgebraStruct.counit) (map_comp_comul : TensorProduct.map f.toLinearMap f.toLinearMap ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ f.toLinearMap) (aβ : A) : (BialgHom.ofAlgHom f counit_comp map_comp_comul) aβ = (ββf.toRingHom).toFun aβ - BialgHom.coe_mks π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A β B} (hβ : β (x y : A), f (x + y) = f x + f y) (hβ : β (m : R) (x : A), { toFun := f, map_add' := hβ }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := f, map_add' := hβ }.toFun x) (hβ : CoalgebraStruct.counit ββ { toFun := f, map_add' := hβ, map_smul' := hβ } = CoalgebraStruct.counit) (hβ : TensorProduct.map { toFun := f, map_add' := hβ, map_smul' := hβ } { toFun := f, map_add' := hβ, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := f, map_add' := hβ, map_smul' := hβ }) (hβ : { toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun 1 = 1) (hβ : β (x y : A), { toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun (x * y) = { toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun x * { toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun y) : β{ toFun := f, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, map_one' := hβ, map_mul' := hβ } = f - BialgHom.mk_coe π Mathlib.RingTheory.Bialgebra.Hom
{R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A ββc[R] B} (hβ : β (x y : A), f (x + y) = f x + f y) (hβ : β (m : R) (x : A), { toFun := βf, map_add' := hβ }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := βf, map_add' := hβ }.toFun x) (hβ : CoalgebraStruct.counit ββ { toFun := βf, map_add' := hβ, map_smul' := hβ } = CoalgebraStruct.counit) (hβ : TensorProduct.map { toFun := βf, map_add' := hβ, map_smul' := hβ } { toFun := βf, map_add' := hβ, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := βf, map_add' := hβ, map_smul' := hβ }) (hβ : { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun 1 = 1) (hβ : β (x y : A), { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun (x * y) = { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun x * { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun y) : { toFun := βf, map_add' := hβ, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, map_one' := hβ, map_mul' := hβ } = f - BialgEquiv.coe_mk π Mathlib.RingTheory.Bialgebra.Equiv
{R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A β B} {h : β (x y : A), f (x + y) = f x + f y} {hβ : β (m : R) (x : A), { toFun := f, map_add' := h }.toFun (m β’ x) = (RingHom.id R) m β’ { toFun := f, map_add' := h }.toFun x} {hβ : CoalgebraStruct.counit ββ { toFun := f, map_add' := h, map_smul' := hβ } = CoalgebraStruct.counit} {hβ : TensorProduct.map { toFun := f, map_add' := h, map_smul' := hβ } { toFun := f, map_add' := h, map_smul' := hβ } ββ CoalgebraStruct.comul = CoalgebraStruct.comul ββ { toFun := f, map_add' := h, map_smul' := hβ }} {hβ : B β A} {hβ : Function.LeftInverse hβ { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun} {hβ : Function.RightInverse hβ { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ }.toFun} {hβ : β (x y : A), { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, invFun := hβ, left_inv := hβ, right_inv := hβ }.toFun (x * y) = { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, invFun := hβ, left_inv := hβ, right_inv := hβ }.toFun x * { toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, invFun := hβ, left_inv := hβ, right_inv := hβ }.toFun y} : β{ toFun := f, map_add' := h, map_smul' := hβ, counit_comp := hβ, map_comp_comul := hβ, invFun := hβ, left_inv := hβ, right_inv := hβ , map_mul' := hβ } = f - CoalgebraCat.MonoidalCategoryAux.tensorHom_toLinearMap π Mathlib.Algebra.Category.CoalgebraCat.ComonEquivalence
{R : Type u} [CommRing R] {M N P Q : Type u} [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [AddCommGroup Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Coalgebra R M] [Coalgebra R N] [Coalgebra R P] [Coalgebra R Q] (f : M ββc[R] N) (g : P ββc[R] Q) : (CategoryTheory.MonoidalCategoryStruct.tensorHom (CoalgebraCat.ofHom f) (CoalgebraCat.ofHom g)).toCoalgHom'.toLinearMap = TensorProduct.map f.toLinearMap g.toLinearMap - CoalgebraCat.MonoidalCategoryAux.tensorObj_comul π Mathlib.Algebra.Category.CoalgebraCat.ComonEquivalence
{R : Type u} [CommRing R] (K L : CoalgebraCat R) : CoalgebraStruct.comul = β(TensorProduct.tensorTensorTensorComm R βK.toModuleCat βK.toModuleCat βL.toModuleCat βL.toModuleCat) ββ TensorProduct.map CoalgebraStruct.comul CoalgebraStruct.comul - Coalgebra.TensorProduct.map_toLinearMap π Mathlib.RingTheory.Coalgebra.TensorProduct
{R M N P Q : Type u} [CommRing R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [AddCommGroup Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Coalgebra R M] [Coalgebra R N] [Coalgebra R P] [Coalgebra R Q] (f : M ββc[R] N) (g : P ββc[R] Q) : β(Coalgebra.TensorProduct.map f g) = TensorProduct.map βf βg - map_dualTensorHom π Mathlib.LinearAlgebra.Contraction
{R : Type u_2} {M : Type u_3} {N : Type u_4} {P : Type u_5} {Q : Type u_6} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] (f : Module.Dual R M) (p : P) (g : Module.Dual R N) (q : Q) : TensorProduct.map ((dualTensorHom R M P) (f ββ[R] p)) ((dualTensorHom R N Q) (g ββ[R] q)) = (dualTensorHom R (TensorProduct R M N) (TensorProduct R P Q)) ((TensorProduct.dualDistrib R M N) (f ββ[R] g) ββ[R] p ββ[R] q) - TensorProduct.antipode_def π Mathlib.RingTheory.HopfAlgebra.TensorProduct
{R A B : Type u} [CommRing R] [Ring A] [Ring B] [HopfAlgebra R A] [HopfAlgebra R B] : HopfAlgebraStruct.antipode = TensorProduct.map HopfAlgebraStruct.antipode HopfAlgebraStruct.antipode - TensorProduct.map_surjective π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_1} [CommSemiring R] {N : Type u_3} {P : Type u_4} [AddCommMonoid N] [AddCommMonoid P] [Module R N] [Module R P] {g : N ββ[R] P} (hg : Function.Surjective βg) {N' : Type u_6} {P' : Type u_7} [AddCommMonoid N'] [AddCommMonoid P'] [Module R N'] [Module R P'] {g' : N' ββ[R] P'} (hg' : Function.Surjective βg') : Function.Surjective β(TensorProduct.map g g') - TensorProduct.map_ker π Mathlib.LinearAlgebra.TensorProduct.RightExactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {P : Type u_4} [CommRing R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] {f : M ββ[R] N} {g : N ββ[R] P} (hfg : Function.Exact βf βg) (hg : Function.Surjective βg) {M' : Type u_6} {N' : Type u_7} {P' : Type u_8} [AddCommGroup M'] [AddCommGroup N'] [AddCommGroup P'] [Module R M'] [Module R N'] [Module R P'] {f' : M' ββ[R] N'} {g' : N' ββ[R] P'} (hfg' : Function.Exact βf' βg') (hg' : Function.Surjective βg') : LinearMap.ker (TensorProduct.map g g') = LinearMap.range (LinearMap.lTensor N f') β LinearMap.range (LinearMap.rTensor N' f) - TensorProduct.quotientTensorEquiv π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} (N : Type u_3) [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) : TensorProduct R (M β§Έ m) N ββ[R] TensorProduct R M N β§Έ LinearMap.range (TensorProduct.map m.subtype LinearMap.id) - TensorProduct.tensorQuotientEquiv π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} (M : Type u_2) {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (n : Submodule R N) : TensorProduct R M (N β§Έ n) ββ[R] TensorProduct R M N β§Έ LinearMap.range (TensorProduct.map LinearMap.id n.subtype) - TensorProduct.quotientTensorQuotientEquiv π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) (n : Submodule R N) : TensorProduct R (M β§Έ m) (N β§Έ n) ββ[R] TensorProduct R M N β§Έ LinearMap.range (TensorProduct.map m.subtype LinearMap.id) β LinearMap.range (TensorProduct.map LinearMap.id n.subtype) - TensorProduct.quotientTensorEquiv_apply_tmul_mk π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) (x : M) (y : N) : (TensorProduct.quotientTensorEquiv N m) (Submodule.Quotient.mk x ββ[R] y) = Submodule.Quotient.mk (x ββ[R] y) - TensorProduct.tensorQuotientEquiv_apply_mk_tmul π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (n : Submodule R N) (x : M) (y : N) : (TensorProduct.tensorQuotientEquiv M n) (x ββ[R] Submodule.Quotient.mk y) = Submodule.Quotient.mk (x ββ[R] y) - TensorProduct.quotientTensorEquiv_symm_apply_mk_tmul π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) (x : M) (y : N) : (TensorProduct.quotientTensorEquiv N m).symm (Submodule.Quotient.mk (x ββ[R] y)) = Submodule.Quotient.mk x ββ[R] y - TensorProduct.tensorQuotientEquiv_symm_apply_tmul_mk π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (n : Submodule R N) (x : M) (y : N) : (TensorProduct.tensorQuotientEquiv M n).symm (Submodule.Quotient.mk (x ββ[R] y)) = x ββ[R] Submodule.Quotient.mk y - TensorProduct.quotientTensorQuotientEquiv_apply_tmul_mk_tmul_mk π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) (n : Submodule R N) (x : M) (y : N) : (TensorProduct.quotientTensorQuotientEquiv m n) (Submodule.Quotient.mk x ββ[R] Submodule.Quotient.mk y) = Submodule.Quotient.mk (x ββ[R] y) - TensorProduct.quotientTensorQuotientEquiv_symm_apply_mk_tmul π Mathlib.LinearAlgebra.TensorProduct.Quotient
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (m : Submodule R M) (n : Submodule R N) (x : M) (y : N) : (TensorProduct.quotientTensorQuotientEquiv m n).symm (Submodule.Quotient.mk (x ββ[R] y)) = Submodule.Quotient.mk x ββ[R] Submodule.Quotient.mk y - TensorProduct.map_injective_of_flat_flat π Mathlib.RingTheory.Flat.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {P : Type u_4} {Q : Type u_5} [AddCommMonoid P] [Module R P] [AddCommMonoid Q] [Module R Q] (f : P ββ[R] M) (g : Q ββ[R] N) [Module.Flat R M] [Module.Flat R Q] (hf : Function.Injective βf) (hg : Function.Injective βg) : Function.Injective β(TensorProduct.map f g) - TensorProduct.map_injective_of_flat_flat' π Mathlib.RingTheory.Flat.Basic
{R : Type u_1} [CommSemiring R] {M : Type u_2} {N : Type u_3} [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] {P : Type u_4} {Q : Type u_5} [AddCommMonoid P] [Module R P] [AddCommMonoid Q] [Module R Q] (f : P ββ[R] M) (g : Q ββ[R] N) [Module.Flat R P] [Module.Flat R N] (hf : Function.Injective βf) (hg : Function.Injective βg) : Function.Injective β(TensorProduct.map f g) - LinearMap.trace_tensorProduct' π Mathlib.LinearAlgebra.Trace
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {N : Type u_3} [AddCommGroup N] [Module R N] [Module.Free R M] [Module.Finite R M] [Module.Free R N] [Module.Finite R N] (f : M ββ[R] M) (g : N ββ[R] N) : (LinearMap.trace R (TensorProduct R M N)) (TensorProduct.map f g) = (LinearMap.trace R M) f * (LinearMap.trace R N) g - TensorProduct.LieModule.coe_linearMap_map π Mathlib.Algebra.Lie.TensorProduct
{R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type wβ} {P : Type wβ} {Q : Type wβ} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] [AddCommGroup Q] [Module R Q] [LieRingModule L Q] [LieModule R L Q] (f : M βββ R,Lβ P) (g : N βββ R,Lβ Q) : β(TensorProduct.LieModule.map f g) = TensorProduct.map βf βg - TensorProduct.LieModule.toLinearMap_map π Mathlib.Algebra.Lie.TensorProduct
{R : Type u} [CommRing R] {L : Type v} {M : Type w} {N : Type wβ} {P : Type wβ} {Q : Type wβ} [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] [AddCommGroup P] [Module R P] [LieRingModule L P] [LieModule R L P] [AddCommGroup Q] [Module R Q] [LieRingModule L Q] [LieModule R L Q] (f : M βββ R,Lβ P) (g : N βββ R,Lβ Q) : β(TensorProduct.LieModule.map f g) = TensorProduct.map βf βg - Representation.tprod_apply π Mathlib.RepresentationTheory.Basic
{k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] (ΟV : Representation k G V) (ΟW : Representation k G W) (g : G) : (ΟV.tprod ΟW) g = TensorProduct.map (ΟV g) (ΟW g) - Representation.dualTensorHom_comm π Mathlib.RepresentationTheory.Basic
{k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [CommSemiring k] [Group G] [AddCommMonoid V] [Module k V] [AddCommMonoid W] [Module k W] (ΟV : Representation k G V) (ΟW : Representation k G W) (g : G) : dualTensorHom k V W ββ TensorProduct.map (ΟV.dual g) (ΟW g) = (ΟV.linHom ΟW) g ββ dualTensorHom k V W - Submodule.mulMap_comp_map_inclusion π Mathlib.LinearAlgebra.TensorProduct.Submodule
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {M N M' N' : Submodule R S} (hM : M' β€ M) (hN : N' β€ N) : M.mulMap N ββ TensorProduct.map (Submodule.inclusion hM) (Submodule.inclusion hN) = M'.mulMap N' - Submodule.mulMap_map_comp_eq π Mathlib.LinearAlgebra.TensorProduct.Submodule
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (M N : Submodule R S) {T : Type w} [Semiring T] [Algebra R T] {F : Type u_1} [FunLike F S T] [AlgHomClass F R S T] (f : F) : (Submodule.map f M).mulMap (Submodule.map f N) ββ TensorProduct.map ((βf).submoduleMap M) ((βf).submoduleMap N) = βf ββ M.mulMap N - Algebra.TensorProduct.linearEquivIncludeRange_toLinearMap π Mathlib.LinearAlgebra.TensorProduct.Subalgebra
(R : Type u_1) (S : Type u_2) (T : Type u_3) [CommSemiring R] [Semiring S] [Algebra R S] [Semiring T] [Algebra R T] : β(Algebra.TensorProduct.linearEquivIncludeRange R S T) = TensorProduct.map Algebra.TensorProduct.includeLeft.toLinearMap.rangeRestrict Algebra.TensorProduct.includeRight.toLinearMap.rangeRestrict - Algebra.TensorProduct.opAlgEquiv_apply π Mathlib.LinearAlgebra.TensorProduct.Opposite
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra R A] [Algebra R B] [Algebra S A] [IsScalarTower R S A] (x : TensorProduct R Aα΅α΅α΅ Bα΅α΅α΅) : (Algebra.TensorProduct.opAlgEquiv R S A B) x = MulOpposite.op ((TensorProduct.map β(MulOpposite.opLinearEquiv R).symm β(MulOpposite.opLinearEquiv R).symm) x) - Algebra.TensorProduct.opAlgEquiv_symm_apply π Mathlib.LinearAlgebra.TensorProduct.Opposite
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Algebra R S] [Algebra R A] [Algebra R B] [Algebra S A] [IsScalarTower R S A] (x : (TensorProduct R A B)α΅α΅α΅) : (Algebra.TensorProduct.opAlgEquiv R S A B).symm x = (TensorProduct.map β(MulOpposite.opLinearEquiv R) β(MulOpposite.opLinearEquiv R)) (MulOpposite.unop x) - CliffordAlgebra.toBaseChange_involute π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) (x : CliffordAlgebra (QuadraticForm.baseChange A Q)) : (CliffordAlgebra.toBaseChange A Q) (CliffordAlgebra.involute x) = (TensorProduct.map LinearMap.id CliffordAlgebra.involute.toLinearMap) ((CliffordAlgebra.toBaseChange A Q) x) - CliffordAlgebra.toBaseChange_reverse π Mathlib.LinearAlgebra.CliffordAlgebra.BaseChange
{R : Type u_1} (A : Type u_2) {V : Type u_3} [CommRing R] [CommRing A] [AddCommGroup V] [Algebra R A] [Module R V] [Invertible 2] (Q : QuadraticForm R V) (x : CliffordAlgebra (QuadraticForm.baseChange A Q)) : (CliffordAlgebra.toBaseChange A Q) (CliffordAlgebra.reverse x) = (TensorProduct.map LinearMap.id CliffordAlgebra.reverse) ((CliffordAlgebra.toBaseChange A Q) x) - TensorProduct.gradedMul_def π Mathlib.LinearAlgebra.TensorProduct.Graded.External
(R : Type u_5) {ΞΉ : Type u_6} [CommSemiring ΞΉ] [Module ΞΉ (Additive β€Λ£)] [DecidableEq ΞΉ] (π : ΞΉ β Type u_7) (β¬ : ΞΉ β Type u_8) [CommRing R] [(i : ΞΉ) β AddCommGroup (π i)] [(i : ΞΉ) β AddCommGroup (β¬ i)] [(i : ΞΉ) β Module R (π i)] [(i : ΞΉ) β Module R (β¬ i)] [DirectSum.GRing π] [DirectSum.GRing β¬] [DirectSum.GAlgebra R π] [DirectSum.GAlgebra R β¬] : TensorProduct.gradedMul R π β¬ = TensorProduct.curry (TensorProduct.map (LinearMap.mul' R (DirectSum ΞΉ fun i => π i)) (LinearMap.mul' R (DirectSum ΞΉ fun i => β¬ i)) ββ β(TensorProduct.assoc R (DirectSum ΞΉ fun i => π i) (DirectSum ΞΉ fun i => π i) (TensorProduct R (DirectSum ΞΉ fun i => β¬ i) (DirectSum ΞΉ fun i => β¬ i))).symm ββ LinearMap.lTensor (DirectSum ΞΉ fun i => π i) (β(TensorProduct.assoc R (DirectSum ΞΉ fun i => π i) (DirectSum ΞΉ fun i => β¬ i) (DirectSum ΞΉ fun i => β¬ i)) ββ LinearMap.rTensor (DirectSum ΞΉ fun i => β¬ i) β(TensorProduct.gradedComm R β¬ π) ββ β(TensorProduct.assoc R (DirectSum ΞΉ β¬) (DirectSum ΞΉ π) (DirectSum ΞΉ β¬)).symm) ββ β(TensorProduct.assoc R (DirectSum ΞΉ π) (DirectSum ΞΉ β¬) (TensorProduct R (DirectSum ΞΉ π) (DirectSum ΞΉ β¬)))) - QuadraticForm.tmul_comp_tensorMap π Mathlib.LinearAlgebra.QuadraticForm.TensorProduct.Isometries
{R : Type uR} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Invertible 2] {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} (f : Qβ βqα΅’ Qβ) (g : Qβ βqα΅’ Qβ) : QuadraticMap.comp (Qβ.tmul Qβ) (TensorProduct.map f.toLinearMap g.toLinearMap) = Qβ.tmul Qβ - QuadraticForm.tmul_tensorMap_apply π Mathlib.LinearAlgebra.QuadraticForm.TensorProduct.Isometries
{R : Type uR} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Invertible 2] {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} (f : Qβ βqα΅’ Qβ) (g : Qβ βqα΅’ Qβ) (x : TensorProduct R Mβ Mβ) : (Qβ.tmul Qβ) ((TensorProduct.map f.toLinearMap g.toLinearMap) x) = (Qβ.tmul Qβ) x - QuadraticMap.Isometry.tmul_apply π Mathlib.LinearAlgebra.QuadraticForm.TensorProduct.Isometries
{R : Type uR} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} {Mβ : Type uMβ} [CommRing R] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [AddCommGroup Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Module R Mβ] [Invertible 2] {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} {Qβ : QuadraticForm R Mβ} (f : Qβ βqα΅’ Qβ) (g : Qβ βqα΅’ Qβ) (x : TensorProduct R Mβ Mβ) : (f.tmul g) x = (TensorProduct.map f.toLinearMap g.toLinearMap) x - Matrix.toLin_kronecker π Mathlib.LinearAlgebra.TensorProduct.Matrix
{R : Type u_1} {M : Type u_2} {N : Type u_3} {M' : Type u_5} {N' : Type u_6} {ΞΉ : Type u_7} {ΞΊ : Type u_8} {ΞΉ' : Type u_10} {ΞΊ' : Type u_11} [DecidableEq ΞΉ] [DecidableEq ΞΊ] [Fintype ΞΉ] [Fintype ΞΊ] [Finite ΞΉ'] [Finite ΞΊ'] [CommRing R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup M'] [AddCommGroup N'] [Module R M] [Module R N] [Module R M'] [Module R N'] (bM : Basis ΞΉ R M) (bN : Basis ΞΊ R N) (bM' : Basis ΞΉ' R M') (bN' : Basis ΞΊ' R N') (A : Matrix ΞΉ' ΞΉ R) (B : Matrix ΞΊ' ΞΊ R) : (Matrix.toLin (bM.tensorProduct bN) (bM'.tensorProduct bN')) (Matrix.kroneckerMap (fun x1 x2 => x1 * x2) A B) = TensorProduct.map ((Matrix.toLin bM bM') A) ((Matrix.toLin bN bN') B) - TensorProduct.toMatrix_map π Mathlib.LinearAlgebra.TensorProduct.Matrix
{R : Type u_1} {M : Type u_2} {N : Type u_3} {M' : Type u_5} {N' : Type u_6} {ΞΉ : Type u_7} {ΞΊ : Type u_8} {ΞΉ' : Type u_10} {ΞΊ' : Type u_11} [DecidableEq ΞΉ] [DecidableEq ΞΊ] [Fintype ΞΉ] [Fintype ΞΊ] [Finite ΞΉ'] [Finite ΞΊ'] [CommRing R] [AddCommGroup M] [AddCommGroup N] [AddCommGroup M'] [AddCommGroup N'] [Module R M] [Module R N] [Module R M'] [Module R N'] (bM : Basis ΞΉ R M) (bN : Basis ΞΊ R N) (bM' : Basis ΞΉ' R M') (bN' : Basis ΞΊ' R N') (f : M ββ[R] M') (g : N ββ[R] N') : (LinearMap.toMatrix (bM.tensorProduct bN) (bM'.tensorProduct bN')) (TensorProduct.map f g) = Matrix.kroneckerMap (fun x1 x2 => x1 * x2) ((LinearMap.toMatrix bM bM') f) ((LinearMap.toMatrix bN bN') g) - AddMonoidAlgebra.comul_single π Mathlib.RingTheory.Coalgebra.MonoidAlgebra
{R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) : CoalgebraStruct.comul (AddMonoidAlgebra.single x a) = (TensorProduct.map (AddMonoidAlgebra.lsingle x) (AddMonoidAlgebra.lsingle x)) (CoalgebraStruct.comul a) - MonoidAlgebra.comul_single π Mathlib.RingTheory.Coalgebra.MonoidAlgebra
{R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) : CoalgebraStruct.comul (MonoidAlgebra.single x a) = (TensorProduct.map (MonoidAlgebra.lsingle x) (MonoidAlgebra.lsingle x)) (CoalgebraStruct.comul a) - LaurentPolynomial.comul_C π Mathlib.RingTheory.Coalgebra.MonoidAlgebra
{R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Module R A] [Coalgebra R A] (a : A) : CoalgebraStruct.comul (LaurentPolynomial.C a) = (TensorProduct.map (AddMonoidAlgebra.lsingle 0) (AddMonoidAlgebra.lsingle 0)) (CoalgebraStruct.comul a) - LaurentPolynomial.comul_C_mul_T π Mathlib.RingTheory.Coalgebra.MonoidAlgebra
{R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Module R A] [Coalgebra R A] (a : A) (n : β€) : CoalgebraStruct.comul (LaurentPolynomial.C a * LaurentPolynomial.T n) = (TensorProduct.map (AddMonoidAlgebra.lsingle n) (AddMonoidAlgebra.lsingle n)) (CoalgebraStruct.comul a) - TensorProduct.map_injective_of_flat_flat_of_isDomain π Mathlib.RingTheory.Flat.Domain
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommRing R] [IsDomain R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : Type u_4} {Q : Type u_5} [AddCommGroup P] [Module R P] [AddCommGroup Q] [Module R Q] (f : P ββ[R] M) (g : Q ββ[R] N) [H : Module.Flat R P] [Module.Flat R Q] (hf : Function.Injective βf) (hg : Function.Injective βg) : Function.Injective β(TensorProduct.map f g)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65