Loogle!
Result
Found 14 declarations mentioning TopologicalSpace.OpenNhds.map.
- TopologicalSpace.OpenNhds.map ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : CategoryTheory.Functor (TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) (TopologicalSpace.OpenNhds x) - IsOpenMap.adjunctionNhds ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} {f : X โถ Y} (h : IsOpenMap โ(CategoryTheory.ConcreteCategory.hom f)) (x : โX) : h.functorNhds x โฃ TopologicalSpace.OpenNhds.map f x - Topology.IsInducing.adjunctionNhds ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} {f : X โถ Y} (h : Topology.IsInducing โ(CategoryTheory.ConcreteCategory.hom f)) (x : โX) : TopologicalSpace.OpenNhds.map f x โฃ h.functorNhds x - TopologicalSpace.OpenNhds.map_id_obj ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X : TopCat} (x : โX) (U : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.id X)) x)) : (TopologicalSpace.OpenNhds.map (CategoryTheory.CategoryStruct.id X) x).obj U = U - TopologicalSpace.OpenNhds.map_id_obj_unop ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X : TopCat} (x : โX) (U : (TopologicalSpace.OpenNhds x)แตแต) : (TopologicalSpace.OpenNhds.map (CategoryTheory.CategoryStruct.id X) x).obj (Opposite.unop U) = Opposite.unop U - TopologicalSpace.OpenNhds.map_id_obj' ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X : TopCat} (x : โX) (U : Set โX) (p : IsOpen U) (q : (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.id X)) x โ { carrier := U, is_open' := p }) : (TopologicalSpace.OpenNhds.map (CategoryTheory.CategoryStruct.id X) x).obj { obj := { carrier := U, is_open' := p }, property := q } = { obj := { carrier := U, is_open' := p }, property := q } - TopologicalSpace.OpenNhds.op_map_id_obj ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X : TopCat} (x : โX) (U : (TopologicalSpace.OpenNhds x)แตแต) : (TopologicalSpace.OpenNhds.map (CategoryTheory.CategoryStruct.id X) x).op.obj U = U - TopologicalSpace.OpenNhds.inclusionMapIso ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f) โ (TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x) - TopologicalSpace.OpenNhds.map_obj ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (U : TopologicalSpace.Opens โY) (q : (CategoryTheory.ConcreteCategory.hom f) x โ U) : (TopologicalSpace.OpenNhds.map f x).obj { obj := U, property := q } = { obj := (TopologicalSpace.Opens.map f).obj U, property := q } - TopologicalSpace.OpenNhds.inclusionMapIso_inv ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f)) - TopologicalSpace.OpenNhds.inclusionMapIso_inv_app ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (Xโ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv.app Xโ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion x).obj ((TopologicalSpace.OpenNhds.map f x).obj Xโ)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom_app ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (Xโ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom.app Xโ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.Opens.map f).obj ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).obj Xโ)) - TopCat.Presheaf.stalkPushforward.eq_1 ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C X) (x : โX) : TopCat.Presheaf.stalkPushforward C f F x = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colim.map (CategoryTheory.whiskerRight (CategoryTheory.NatTrans.op (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv) F)) (CategoryTheory.Limits.colimit.pre (((CategoryTheory.whiskeringLeft (TopologicalSpace.OpenNhds x)แตแต (TopologicalSpace.Opens โX)แตแต C).obj (TopologicalSpace.OpenNhds.inclusion x).op).obj F) (TopologicalSpace.OpenNhds.map f x).op)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08