Loogle!
Result
Found 534 declarations mentioning TopologicalSpace.Opens.map. Of these, only the first 200 are shown.
- TopologicalSpace.Opens.map ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) : CategoryTheory.Functor (TopologicalSpace.Opens โY) (TopologicalSpace.Opens โX) - TopologicalSpace.Opens.map_id_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens โX) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj U = U - TopologicalSpace.Opens.map_id_obj_unop ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : (TopologicalSpace.Opens โX)แตแต) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj (Opposite.unop U) = Opposite.unop U - TopologicalSpace.Opens.map_id_obj' ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : Set โX) (p : IsOpen U) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj { carrier := U, is_open' := p } = { carrier := U, is_open' := p } - TopologicalSpace.Opens.map_eq ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X โถ Y) (h : f = g) : TopologicalSpace.Opens.map f = TopologicalSpace.Opens.map g - TopologicalSpace.Opens.map_id_eq ๐ Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.Functor.id (TopologicalSpace.Opens โX) - TopologicalSpace.Opens.mapMapIso_functor ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X โ Y) : (TopologicalSpace.Opens.mapMapIso H).functor = TopologicalSpace.Opens.map H.hom - TopologicalSpace.Opens.mapMapIso_inverse ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X โ Y) : (TopologicalSpace.Opens.mapMapIso H).inverse = TopologicalSpace.Opens.map H.inv - IsOpenMap.adjunction ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : IsOpenMap โ(CategoryTheory.ConcreteCategory.hom f)) : hf.functor โฃ TopologicalSpace.Opens.map f - Topology.IsInducing.adjunction ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : Topology.IsInducing โ(CategoryTheory.ConcreteCategory.hom f)) : TopologicalSpace.Opens.map f โฃ hf.functor - Topology.IsInducing.map_functorObj ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : Topology.IsInducing โ(CategoryTheory.ConcreteCategory.hom f)) (U : TopologicalSpace.Opens โX) : (TopologicalSpace.Opens.map f).obj (hf.functorObj U) = U - TopologicalSpace.Opens.op_map_id_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : (TopologicalSpace.Opens โX)แตแต) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).op.obj U = U - TopologicalSpace.Opens.mapIso ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X โถ Y) (h : f = g) : TopologicalSpace.Opens.map f โ TopologicalSpace.Opens.map g - TopologicalSpace.Opens.mapId ๐ Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X) โ CategoryTheory.Functor.id (TopologicalSpace.Opens โX) - TopologicalSpace.Opens.map_coe ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) (U : TopologicalSpace.Opens โY) : โ((TopologicalSpace.Opens.map f).obj U) = โ(CategoryTheory.ConcreteCategory.hom f) โปยน' โU - TopologicalSpace.Opens.map_comp_eq ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g) = (TopologicalSpace.Opens.map g).comp (TopologicalSpace.Opens.map f) - Topology.IsInducing.opensGI ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : Topology.IsInducing โ(CategoryTheory.ConcreteCategory.hom f)) : GaloisInsertion (TopologicalSpace.Opens.map f).obj hf.functorObj - TopologicalSpace.Opens.map_iSup ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) {ฮน : Type u_1} (U : ฮน โ TopologicalSpace.Opens โY) : (TopologicalSpace.Opens.map f).obj (iSup U) = iSup ((TopologicalSpace.Opens.map f).obj โ U) - TopologicalSpace.Opens.map_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) (U : Set โY) (p : IsOpen U) : (TopologicalSpace.Opens.map f).obj { carrier := U, is_open' := p } = { carrier := โ(CategoryTheory.ConcreteCategory.hom f) โปยน' U, is_open' := โฏ } - TopologicalSpace.Opens.leMapTop ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) (U : TopologicalSpace.Opens โX) : U โถ (TopologicalSpace.Opens.map f).obj โค - Topology.IsInducing.le_functorObj_iff ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : Topology.IsInducing โ(CategoryTheory.ConcreteCategory.hom f)) {U : TopologicalSpace.Opens โX} {V : TopologicalSpace.Opens โY} : V โค hf.functorObj U โ (TopologicalSpace.Opens.map f).obj V โค U - TopologicalSpace.Opens.map_comp_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : TopologicalSpace.Opens โZ) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj U = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj U) - TopologicalSpace.Opens.map_comp_obj_unop ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : (TopologicalSpace.Opens โZ)แตแต) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj (Opposite.unop U) = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj (Opposite.unop U)) - TopologicalSpace.Opens.map_comp_obj' ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : Set โZ) (p : IsOpen U) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj { carrier := U, is_open' := p } = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj { carrier := U, is_open' := p }) - TopologicalSpace.Opens.mapComp ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g) โ (TopologicalSpace.Opens.map g).comp (TopologicalSpace.Opens.map f) - TopologicalSpace.Opens.map_top ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) : (TopologicalSpace.Opens.map f).obj โค = โค - TopologicalSpace.Opens.map_functor_eq' ๐ Mathlib.Topology.Category.TopCat.Opens
{X U : TopCat} (f : U โถ X) (hf : Topology.IsOpenEmbedding โ(CategoryTheory.ConcreteCategory.hom f)) (V : TopologicalSpace.Opens โU) : (TopologicalSpace.Opens.map f).obj (โฏ.functor.obj V) = V - TopologicalSpace.Opens.mapIso_refl ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) (h : f = f) : TopologicalSpace.Opens.mapIso f f h = CategoryTheory.Iso.refl (TopologicalSpace.Opens.map f) - TopologicalSpace.Opens.functor_obj_map_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X โถ Y} (hf : IsOpenMap โ(CategoryTheory.ConcreteCategory.hom f)) (U : TopologicalSpace.Opens โY) : hf.functor.obj ((TopologicalSpace.Opens.map f).obj U) = hf.functor.obj โค โ U - TopologicalSpace.Opens.op_map_comp_obj ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : (TopologicalSpace.Opens โZ)แตแต) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).op.obj U = (TopologicalSpace.Opens.map f).op.obj ((TopologicalSpace.Opens.map g).op.obj U) - TopologicalSpace.Opens.mapIso_hom_app ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X โถ Y) (h : f = g) (U : TopologicalSpace.Opens โY) : (TopologicalSpace.Opens.mapIso f g h).hom.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.mapIso_inv_app ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X โถ Y) (h : f = g) (U : TopologicalSpace.Opens โY) : (TopologicalSpace.Opens.mapIso f g h).inv.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.map_comp_map ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) {U V : TopologicalSpace.Opens โZ} (i : U โถ V) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).map i = (TopologicalSpace.Opens.map f).map ((TopologicalSpace.Opens.map g).map i) - TopologicalSpace.Opens.mapId_hom_app ๐ Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) (U : TopologicalSpace.Opens โX) : (TopologicalSpace.Opens.mapId X).hom.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.mapId_inv_app ๐ Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) (U : TopologicalSpace.Opens โX) : (TopologicalSpace.Opens.mapId X).inv.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.map.eq_1 ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) : TopologicalSpace.Opens.map f = { obj := fun U => { carrier := โ(CategoryTheory.ConcreteCategory.hom f) โปยน' โU, is_open' := โฏ }, map := fun {X_1 Y_1} i => { down := { down := โฏ } }, map_id := โฏ, map_comp := โฏ } - TopologicalSpace.Opens.map_homOfLE ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X โถ Y) {U V : TopologicalSpace.Opens โY} (e : U โค V) : (TopologicalSpace.Opens.map f).map (CategoryTheory.homOfLE e) = CategoryTheory.homOfLE โฏ - TopologicalSpace.Opens.mapMapIso_counitIso ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X โ Y) : (TopologicalSpace.Opens.mapMapIso H).counitIso = CategoryTheory.NatIso.ofComponents (fun U => CategoryTheory.eqToIso โฏ) โฏ - TopologicalSpace.Opens.mapMapIso_unitIso ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X โ Y) : (TopologicalSpace.Opens.mapMapIso H).unitIso = CategoryTheory.NatIso.ofComponents (fun U => CategoryTheory.eqToIso โฏ) โฏ - TopologicalSpace.Opens.mapComp_hom_app ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : TopologicalSpace.Opens โZ) : (TopologicalSpace.Opens.mapComp f g).hom.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.mapComp_inv_app ๐ Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X โถ Y) (g : Y โถ Z) (U : TopologicalSpace.Opens โZ) : (TopologicalSpace.Opens.mapComp f g).inv.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.functor_map_eq_inf ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U V : TopologicalSpace.Opens โX) : โฏ.functor.obj ((TopologicalSpace.Opens.map U.inclusion').obj V) = V โ U - TopologicalSpace.Opens.map_functor_eq ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} {U : TopologicalSpace.Opens โX} (V : TopologicalSpace.Opens โฅU) : (TopologicalSpace.Opens.map U.inclusion').obj (โฏ.functor.obj V) = V - TopologicalSpace.Opens.inclusion'_map_eq_top ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens โX) : (TopologicalSpace.Opens.map U.inclusion').obj U = โค - TopologicalSpace.Opens.inclusion'_top_functor ๐ Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : โฏ.functor = TopologicalSpace.Opens.map (TopologicalSpace.Opens.inclusionTopIso X).inv - TopologicalSpace.Opens.adjunction_counit_app_self ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens โX) : โฏ.adjunction.counit.app U = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.adjunction_counit_map_functor ๐ Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} {U : TopologicalSpace.Opens โX} (V : TopologicalSpace.Opens โฅU) : โฏ.adjunction.counit.app (โฏ.functor.obj V) = CategoryTheory.eqToHom โฏ - TopologicalSpace.Opens.mapIso.congr_simp ๐ Mathlib.Topology.Sheaves.Presheaf
{X Y : TopCat} (f g : X โถ Y) (h : f = g) : TopologicalSpace.Opens.mapIso f g h = TopologicalSpace.Opens.mapIso f g h - TopCat.Presheaf.pushforward_obj_obj ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (f : X โถ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) (Xโ : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.pushforward C f).obj G).obj Xโ = G.obj (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop Xโ))) - TopCat.Presheaf.presheafEquivOfIso_functor_obj_obj ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) (Xโ : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.obj G).obj Xโ = G.obj (Opposite.op ((TopologicalSpace.Opens.map H.hom).obj (Opposite.unop Xโ))) - TopCat.Presheaf.presheafEquivOfIso_inverse_obj_obj ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โY)แตแต C) (Xโ : (TopologicalSpace.Opens โX)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.obj G).obj Xโ = G.obj (Opposite.op ((TopologicalSpace.Opens.map H.inv).obj (Opposite.unop Xโ))) - TopCat.Presheaf.pushforward_map_app' ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (f : X โถ Y) {โฑ ๐ข : TopCat.Presheaf C X} (ฮฑ : โฑ โถ ๐ข) {U : (TopologicalSpace.Opens โY)แตแต} : ((TopCat.Presheaf.pushforward C f).map ฮฑ).app U = ฮฑ.app (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop U))) - TopCat.Presheaf.pushforwardEq.eq_1 ๐ Mathlib.Topology.Sheaves.Presheaf
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} {f g : X โถ Y} (h : f = g) (โฑ : TopCat.Presheaf C X) : TopCat.Presheaf.pushforwardEq h โฑ = CategoryTheory.Functor.isoWhiskerRight (CategoryTheory.NatIso.op (TopologicalSpace.Opens.mapIso f g h).symm) โฑ - TopCat.Presheaf.pushforwardEq_hom_app ๐ Mathlib.Topology.Sheaves.Presheaf
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} {f g : X โถ Y} (h : f = g) (โฑ : TopCat.Presheaf C X) (U : (TopologicalSpace.Opens โY)แตแต) : (TopCat.Presheaf.pushforwardEq h โฑ).hom.app U = โฑ.map (CategoryTheory.eqToHom โฏ) - TopCat.Presheaf.pushforward_obj_map ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (f : X โถ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) {Xโ Yโ : (TopologicalSpace.Opens โY)แตแต} (fโ : Xโ โถ Yโ) : ((TopCat.Presheaf.pushforward C f).obj G).map fโ = G.map ((TopologicalSpace.Opens.map f).map fโ.unop).op - TopCat.Presheaf.pushforward_map_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (f : X โถ Y) {Xโ Yโ : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C} (ฮฑ : Xโ โถ Yโ) (Xโยน : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.pushforward C f).map ฮฑ).app Xโยน = ฮฑ.app (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop Xโยน))) - TopCat.Presheaf.pushforwardToOfIso_app ๐ Mathlib.Topology.Sheaves.Presheaf
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (Hโ : X โ Y) {โฑ : TopCat.Presheaf C Y} {๐ข : TopCat.Presheaf C X} (Hโ : โฑ โถ (TopCat.Presheaf.pushforward C Hโ.hom).obj ๐ข) (U : (TopologicalSpace.Opens โX)แตแต) : (TopCat.Presheaf.pushforwardToOfIso Hโ Hโ).app U = CategoryTheory.CategoryStruct.comp (Hโ.app (Opposite.op ((TopologicalSpace.Opens.map Hโ.inv).obj (Opposite.unop U)))) (๐ข.map (CategoryTheory.eqToHom โฏ)) - TopCat.Presheaf.toPushforwardOfIso_app ๐ Mathlib.Topology.Sheaves.Presheaf
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (Hโ : X โ Y) {โฑ : TopCat.Presheaf C X} {๐ข : TopCat.Presheaf C Y} (Hโ : (TopCat.Presheaf.pushforward C Hโ.hom).obj โฑ โถ ๐ข) (U : (TopologicalSpace.Opens โX)แตแต) : (TopCat.Presheaf.toPushforwardOfIso Hโ Hโ).app U = CategoryTheory.CategoryStruct.comp (โฑ.map (CategoryTheory.eqToHom โฏ)) (Hโ.app (Opposite.op ((TopologicalSpace.Opens.map Hโ.inv).obj (Opposite.unop U)))) - TopCat.Presheaf.presheafEquivOfIso_functor_obj_map ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) {Xโ Yโ : (TopologicalSpace.Opens โY)แตแต} (f : Xโ โถ Yโ) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.obj G).map f = G.map ((TopologicalSpace.Opens.map H.hom).map f.unop).op - TopCat.Presheaf.presheafEquivOfIso_inverse_obj_map ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens โY)แตแต C) {Xโ Yโ : (TopologicalSpace.Opens โX)แตแต} (f : Xโ โถ Yโ) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.obj G).map f = G.map ((TopologicalSpace.Opens.map H.inv).map f.unop).op - TopCat.Presheaf.presheafEquivOfIso_functor_map_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) {Xโ Yโ : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C} (ฮฑ : Xโ โถ Yโ) (Xโยน : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.map ฮฑ).app Xโยน = ฮฑ.app (Opposite.op ((TopologicalSpace.Opens.map H.hom).obj (Opposite.unop Xโยน))) - TopCat.Presheaf.presheafEquivOfIso_inverse_map_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) {Xโ Yโ : CategoryTheory.Functor (TopologicalSpace.Opens โY)แตแต C} (ฮฑ : Xโ โถ Yโ) (Xโยน : (TopologicalSpace.Opens โX)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.map ฮฑ).app Xโยน = ฮฑ.app (Opposite.op ((TopologicalSpace.Opens.map H.inv).obj (Opposite.unop Xโยน))) - TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (Xโ : CategoryTheory.Functor (TopologicalSpace.Opens โY)แตแต C) (Xโยน : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).counitIso.hom.app Xโ).app Xโยน = Xโ.map (CategoryTheory.eqToHom โฏ) - TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (Xโ : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) (Xโยน : (TopologicalSpace.Opens โX)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).unitIso.hom.app Xโ).app Xโยน = Xโ.map (CategoryTheory.eqToHom โฏ) - TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (Xโ : CategoryTheory.Functor (TopologicalSpace.Opens โY)แตแต C) (Xโยน : (TopologicalSpace.Opens โY)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).counitIso.inv.app Xโ).app Xโยน = Xโ.map (CategoryTheory.eqToHom โฏ) - TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app ๐ Mathlib.Topology.Sheaves.Presheaf
(C : Type u) [CategoryTheory.Category.{v, u} C] {X Y : TopCat} (H : X โ Y) (Xโ : CategoryTheory.Functor (TopologicalSpace.Opens โX)แตแต C) (Xโยน : (TopologicalSpace.Opens โX)แตแต) : ((TopCat.Presheaf.presheafEquivOfIso C H).unitIso.inv.app Xโ).app Xโยน = Xโ.map (CategoryTheory.eqToHom โฏ) - AlgebraicGeometry.PresheafedSpace.comp_c_app ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {X Y Z : AlgebraicGeometry.PresheafedSpace C} (ฮฑ : X โถ Y) (ฮฒ : Y โถ Z) (U : (TopologicalSpace.Opens โโZ)แตแต) : (CategoryTheory.CategoryStruct.comp ฮฑ ฮฒ).c.app U = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app U) (ฮฑ.c.app (Opposite.op ((TopologicalSpace.Opens.map ฮฒ.base).obj (Opposite.unop U)))) - AlgebraicGeometry.PresheafedSpace.comp_c_app_assoc ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {X Y Z : AlgebraicGeometry.PresheafedSpace C} (ฮฑ : X โถ Y) (ฮฒ : Y โถ Z) (U : (TopologicalSpace.Opens โโZ)แตแต) {Zโ : C} (h : ((TopCat.Presheaf.pushforward C (CategoryTheory.CategoryStruct.comp ฮฑ ฮฒ).base).obj X.presheaf).obj U โถ Zโ) : CategoryTheory.CategoryStruct.comp ((CategoryTheory.CategoryStruct.comp ฮฑ ฮฒ).c.app U) h = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app U) (CategoryTheory.CategoryStruct.comp (ฮฑ.c.app (Opposite.op ((TopologicalSpace.Opens.map ฮฒ.base).obj (Opposite.unop U)))) h) - AlgebraicGeometry.PresheafedSpace.Hom.ext ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (ฮฑ ฮฒ : X.Hom Y) (w : ฮฑ.base = ฮฒ.base) (h : CategoryTheory.CategoryStruct.comp ฮฑ.c (CategoryTheory.Functor.whiskerRight (CategoryTheory.eqToHom โฏ) X.presheaf) = ฮฒ.c) : ฮฑ = ฮฒ - AlgebraicGeometry.PresheafedSpace.ext ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (ฮฑ ฮฒ : X โถ Y) (w : ฮฑ.base = ฮฒ.base) (h : CategoryTheory.CategoryStruct.comp ฮฑ.c (CategoryTheory.Functor.whiskerRight (CategoryTheory.eqToHom โฏ) X.presheaf) = ฮฒ.c) : ฮฑ = ฮฒ - AlgebraicGeometry.PresheafedSpace.congr_app ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} {ฮฑ ฮฒ : X โถ Y} (h : ฮฑ = ฮฒ) (U : (TopologicalSpace.Opens โโY)แตแต) : ฮฑ.c.app U = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app U) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] {U : TopCat} (X : AlgebraicGeometry.PresheafedSpace C) {f : U โถ โX} (h : Topology.IsOpenEmbedding โ(CategoryTheory.ConcreteCategory.hom f)) (V : (TopologicalSpace.Opens โโX)แตแต) : (X.ofRestrict h).c.app V = X.presheaf.map (โฏ.adjunction.counit.app (Opposite.unop V)).op - AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_obj ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (U : TopologicalSpace.Opens โโ(CategoryTheory.Limits.colimit F)) (j : Jแตแต) : (AlgebraicGeometry.PresheafedSpace.componentwiseDiagram F U).obj j = (F.obj (Opposite.unop j)).presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ฮน F (Opposite.unop j)).base).obj U)) - AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (U : TopologicalSpace.Opens โโ(CategoryTheory.Limits.colimit F)) {j k : Jแตแต} (f : j โถ k) : (AlgebraicGeometry.PresheafedSpace.componentwiseDiagram F U).map f = CategoryTheory.CategoryStruct.comp ((F.map f.unop).c.app (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ฮน F (Opposite.unop j)).base).obj U))) ((F.obj (Opposite.unop k)).presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.descCApp.eq_1 ๐ Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimitsOfShape J TopCat] [โ (X : TopCat), CategoryTheory.Limits.HasLimitsOfShape Jแตแต (TopCat.Presheaf C X)] [CategoryTheory.Limits.HasLimitsOfShape Jแตแต C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) (s : CategoryTheory.Limits.Cocone F) (U : (TopologicalSpace.Opens โโs.pt)แตแต) : AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.descCApp F s U = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.lift ((AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit F).leftOp.comp ((CategoryTheory.evaluation (TopologicalSpace.Opens โ(CategoryTheory.Limits.colimit (F.comp (AlgebraicGeometry.PresheafedSpace.forget C))))แตแต C).obj ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.desc (F.comp (AlgebraicGeometry.PresheafedSpace.forget C)) ((AlgebraicGeometry.PresheafedSpace.forget C).mapCocone s))).op.obj U))) { pt := s.pt.presheaf.obj U, ฯ := { app := fun j => CategoryTheory.CategoryStruct.comp ((s.ฮน.app (Opposite.unop j)).c.app U) ((F.obj (Opposite.unop j)).presheaf.map (CategoryTheory.eqToHom โฏ)), naturality := โฏ } }) (CategoryTheory.Limits.limitObjIsoLimitCompEvaluation (AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit F).leftOp ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.desc (F.comp (AlgebraicGeometry.PresheafedSpace.forget C)) ((AlgebraicGeometry.PresheafedSpace.forget C).mapCocone s))).op.obj U)).inv - TopologicalSpace.OpenNhds.map_obj ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (U : TopologicalSpace.Opens โY) (q : (CategoryTheory.ConcreteCategory.hom f) x โ U) : (TopologicalSpace.OpenNhds.map f x).obj { obj := U, property := q } = { obj := (TopologicalSpace.Opens.map f).obj U, property := q } - TopologicalSpace.OpenNhds.inclusionMapIso ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f) โ (TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x) - TopologicalSpace.OpenNhds.inclusionMapIso_inv_app ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (Xโ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv.app Xโ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion x).obj ((TopologicalSpace.OpenNhds.map f x).obj Xโ)) - TopologicalSpace.OpenNhds.inclusionMapIso_inv ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom_app ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) (Xโ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom.app Xโ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.Opens.map f).obj ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).obj Xโ)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom ๐ Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X โถ Y) (x : โX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f)) - instRepresentablyFlatOpensCarrierMap ๐ Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X โถ Y) : CategoryTheory.RepresentablyFlat (TopologicalSpace.Opens.map f) - compatiblePreserving_opens_map ๐ Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X โถ Y) : CategoryTheory.CompatiblePreserving (Opens.grothendieckTopology โX) (TopologicalSpace.Opens.map f) - coverPreserving_opens_map ๐ Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X โถ Y) : CategoryTheory.CoverPreserving (Opens.grothendieckTopology โY) (Opens.grothendieckTopology โX) (TopologicalSpace.Opens.map f) - instIsContinuousOpensCarrierMapGrothendieckTopology ๐ Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X โถ Y) : (TopologicalSpace.Opens.map f).IsContinuous (Opens.grothendieckTopology โY) (Opens.grothendieckTopology โX) - TopCat.Presheaf.pushforwardPullbackAdjunction.eq_1 ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) : TopCat.Presheaf.pushforwardPullbackAdjunction C f = (TopologicalSpace.Opens.map f).op.lanAdjunction C - TopCat.Presheaf.stalkPushforward_germ ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens โY) (x : โX) (hx : (CategoryTheory.ConcreteCategory.hom f) x โ U) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx) (TopCat.Presheaf.stalkPushforward C f F x) = F.germ ((TopologicalSpace.Opens.map f).obj U) x hx - TopCat.Presheaf.stalkPushforward_germ_assoc ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens โY) (x : โX) (hx : (CategoryTheory.ConcreteCategory.hom f) x โ U) {Z : C} (h : F.stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.stalkPushforward C f F x) h) = CategoryTheory.CategoryStruct.comp (F.germ ((TopologicalSpace.Opens.map f).obj U) x hx) h - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (V : (TopologicalSpace.Opens โY)แตแต) (x : โX) (hx : (CategoryTheory.ConcreteCategory.hom f) x โ Opposite.unop V) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app V) (TopCat.Presheaf.germToPullbackStalk C f F ((TopologicalSpace.Opens.map f).obj (Opposite.unop V)) x hx) = F.germ (Opposite.unop V) ((CategoryTheory.ConcreteCategory.hom f) x) hx - TopCat.Presheaf.germ_stalkPullbackHom ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (x : โX) (U : TopologicalSpace.Opens โY) (hU : (CategoryTheory.ConcreteCategory.hom f) x โ U) : CategoryTheory.CategoryStruct.comp (F.germ U ((CategoryTheory.ConcreteCategory.hom f) x) hU) (TopCat.Presheaf.stalkPullbackHom C f F x) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op U)) (((TopCat.Presheaf.pullback C f).obj F).germ ((TopologicalSpace.Opens.map f).obj U) x hU) - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk_assoc ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (V : (TopologicalSpace.Opens โY)แตแต) (x : โX) (hx : (CategoryTheory.ConcreteCategory.hom f) x โ Opposite.unop V) {Z : C} (h : F.stalk ((CategoryTheory.ConcreteCategory.hom f) x) โถ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app V) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.germToPullbackStalk C f F ((TopologicalSpace.Opens.map f).obj (Opposite.unop V)) x hx) h) = CategoryTheory.CategoryStruct.comp (F.germ (Opposite.unop V) ((CategoryTheory.ConcreteCategory.hom f) x) hx) h - TopCat.Presheaf.germ_stalkPullbackHom_assoc ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (x : โX) (U : TopologicalSpace.Opens โY) (hU : (CategoryTheory.ConcreteCategory.hom f) x โ U) {Z : C} (h : ((TopCat.Presheaf.pullback C f).obj F).stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (F.germ U ((CategoryTheory.ConcreteCategory.hom f) x) hU) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.stalkPullbackHom C f F x) h) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).germ ((TopologicalSpace.Opens.map f).obj U) x hU) h) - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (U : TopologicalSpace.Opens โX) (x : โX) (hx : x โ U) (V : TopologicalSpace.Opens โY) (hV : U โค (TopologicalSpace.Opens.map f).obj V) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) (TopCat.Presheaf.germToPullbackStalk C f F U x hx)) = F.germ V ((CategoryTheory.ConcreteCategory.hom f) x) โฏ - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C Y) (U : TopologicalSpace.Opens โX) (x : โX) (hx : x โ U) (V : TopologicalSpace.Opens โY) (hV : U โค (TopologicalSpace.Opens.map f).obj V) {Z : C} (h : F.stalk ((CategoryTheory.ConcreteCategory.hom f) x) โถ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.germToPullbackStalk C f F U x hx) h)) = CategoryTheory.CategoryStruct.comp (F.germ V ((CategoryTheory.ConcreteCategory.hom f) x) โฏ) h - TopCat.Presheaf.stalkPushforward_germ_apply ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens โY) (x : โX) (hx : (CategoryTheory.ConcreteCategory.hom f) x โ U) {Fโ : C โ C โ Type uF} {carrier : C โ Type w} {instFunLike : (X Y : C) โ FunLike (Fโ X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C Fโ] (xโ : CategoryTheory.ToType (((TopCat.Presheaf.pushforward C f).obj F).obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (TopCat.Presheaf.stalkPushforward C f F x)) ((CategoryTheory.ConcreteCategory.hom (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx)) xโ) = (F.germ ((TopologicalSpace.Opens.map f).obj U) x hx) xโ - TopCat.Presheaf.pullback_obj_obj_ext ๐ Mathlib.Topology.Sheaves.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} {Z : C} {f : X โถ Y} {F : TopCat.Presheaf C Y} (U : (TopologicalSpace.Opens โX)แตแต) {ฯ ฯ : ((TopCat.Presheaf.pullback C f).obj F).obj U โถ Z} (h : โ (V : TopologicalSpace.Opens โY) (hV : Opposite.unop U โค (TopologicalSpace.Opens.map f).obj V), CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) ฯ) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) ฯ)) : ฯ = ฯ - TopCat.Presheaf.pullback_obj_obj_ext_iff ๐ Mathlib.Topology.Sheaves.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} {Z : C} {f : X โถ Y} {F : TopCat.Presheaf C Y} {U : (TopologicalSpace.Opens โX)แตแต} {ฯ ฯ : ((TopCat.Presheaf.pullback C f).obj F).obj U โถ Z} : ฯ = ฯ โ โ (V : TopologicalSpace.Opens โY) (hV : Opposite.unop U โค (TopologicalSpace.Opens.map f).obj V), CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) ฯ) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) ฯ) - TopCat.Presheaf.stalkPushforward.eq_1 ๐ Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X โถ Y) (F : TopCat.Presheaf C X) (x : โX) : TopCat.Presheaf.stalkPushforward C f F x = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colim.map (CategoryTheory.Functor.whiskerRight (CategoryTheory.NatTrans.op (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv) F)) (CategoryTheory.Limits.colimit.pre (((CategoryTheory.Functor.whiskeringLeft (TopologicalSpace.OpenNhds x)แตแต (TopologicalSpace.Opens โX)แตแต C).obj (TopologicalSpace.OpenNhds.inclusion x).op).obj F) (TopologicalSpace.OpenNhds.map f x).op) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ ๐ Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (ฮฑ : X โถ Y) (U : TopologicalSpace.Opens โโY) (x : โโX) (hx : (CategoryTheory.ConcreteCategory.hom ฮฑ.base) x โ U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom ฮฑ.base) x) hx) (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap ฮฑ x) = CategoryTheory.CategoryStruct.comp (ฮฑ.c.app (Opposite.op U)) (X.presheaf.germ ((TopologicalSpace.Opens.map ฮฑ.base).obj U) x hx) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ_assoc ๐ Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (ฮฑ : X โถ Y) (U : TopologicalSpace.Opens โโY) (x : โโX) (hx : (CategoryTheory.ConcreteCategory.hom ฮฑ.base) x โ U) {Z : C} (h : X.presheaf.stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom ฮฑ.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap ฮฑ x) h) = CategoryTheory.CategoryStruct.comp (ฮฑ.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map ฮฑ.base).obj U) x hx) h) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ_apply ๐ Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (ฮฑ : X โถ Y) (U : TopologicalSpace.Opens โโY) (x : โโX) (hx : (CategoryTheory.ConcreteCategory.hom ฮฑ.base) x โ U) {F : C โ C โ Type uF} {carrier : C โ Type w} {instFunLike : (X Y : C) โ FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (xโ : CategoryTheory.ToType (Y.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap ฮฑ x)) ((CategoryTheory.ConcreteCategory.hom (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom ฮฑ.base) x) hx)) xโ) = (CategoryTheory.ConcreteCategory.hom (X.presheaf.germ ((TopologicalSpace.Opens.map ฮฑ.base).obj U) x hx)) ((CategoryTheory.ConcreteCategory.hom (ฮฑ.c.app (Opposite.op U))) xโ) - AlgebraicGeometry.SheafedSpace.comp_c_app ๐ Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.SheafedSpace C} (ฮฑ : X โถ Y) (ฮฒ : Y โถ Z) (U : (TopologicalSpace.Opens โโZ.toPresheafedSpace)แตแต) : (CategoryTheory.CategoryStruct.comp ฮฑ ฮฒ).c.app U = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app U) (ฮฑ.c.app (Opposite.op ((TopologicalSpace.Opens.map ฮฒ.base).obj (Opposite.unop U)))) - AlgebraicGeometry.SheafedSpace.comp_c_app' ๐ Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.SheafedSpace C} (ฮฑ : X โถ Y) (ฮฒ : Y โถ Z) (U : TopologicalSpace.Opens โโZ.toPresheafedSpace) : (CategoryTheory.CategoryStruct.comp ฮฑ ฮฒ).c.app (Opposite.op U) = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app (Opposite.op U)) (ฮฑ.c.app (Opposite.op ((TopologicalSpace.Opens.map ฮฒ.base).obj U))) - AlgebraicGeometry.SheafedSpace.ext ๐ Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (ฮฑ ฮฒ : X โถ Y) (w : ฮฑ.base = ฮฒ.base) (h : CategoryTheory.CategoryStruct.comp ฮฑ.c (CategoryTheory.Functor.whiskerRight (CategoryTheory.eqToHom โฏ) X.presheaf) = ฮฒ.c) : ฮฑ = ฮฒ - AlgebraicGeometry.SheafedSpace.ofRestrict_c_app ๐ Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {U : TopCat} (X : AlgebraicGeometry.SheafedSpace C) {f : U โถ โX.toPresheafedSpace} (h : Topology.IsOpenEmbedding โ(CategoryTheory.ConcreteCategory.hom f)) (V : (TopologicalSpace.Opens โโX.toPresheafedSpace)แตแต) : (X.ofRestrict h).c.app V = X.presheaf.map (โฏ.adjunction.counit.app (Opposite.unop V)).op - AlgebraicGeometry.SheafedSpace.congr_app ๐ Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} {ฮฑ ฮฒ : X โถ Y} (h : ฮฑ = ฮฒ) (U : (TopologicalSpace.Opens โโY.toPresheafedSpace)แตแต) : ฮฑ.c.app U = CategoryTheory.CategoryStruct.comp (ฮฒ.c.app U) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ ๐ Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) (U : TopologicalSpace.Opens โY.toTopCat) (x : โX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) - AlgebraicGeometry.LocallyRingedSpace.comp_c_app ๐ Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y Z : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) (g : Y โถ Z) (U : (TopologicalSpace.Opens โZ.toTopCat)แตแต) : (CategoryTheory.CategoryStruct.comp f g).c.app U = CategoryTheory.CategoryStruct.comp (g.c.app U) (f.c.app (Opposite.op ((TopologicalSpace.Opens.map g.base).obj (Opposite.unop U)))) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_assoc ๐ Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) (U : TopologicalSpace.Opens โY.toTopCat) (x : โX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) {Z : CommRingCat} (h : X.presheaf.stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x) h) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) h) - AlgebraicGeometry.LocallyRingedSpace.preimage_basicOpen ๐ Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) {U : TopologicalSpace.Opens โY.toTopCat} (s : โ(Y.presheaf.obj (Opposite.op U))) : (TopologicalSpace.Opens.map f.base).obj (Y.toRingedSpace.basicOpen s) = X.toRingedSpace.basicOpen ((CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op U))) s) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_apply ๐ Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) (U : TopologicalSpace.Opens โY.toTopCat) (x : โX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) (y : โ(Y.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x)) ((CategoryTheory.ConcreteCategory.hom (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx)) y) = (CategoryTheory.ConcreteCategory.hom (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx)) ((CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op U))) y) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom โฏ) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE โฏ).op - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX) : CategoryTheory.inv (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX) {Z : C} (h : ((TopCat.Presheaf.pushforward C f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)) โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom โฏ)) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE โฏ).op) h - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โX.toTopCat) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom โฏ) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX.toPresheafedSpace) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom โฏ) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp.eq_1 ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX) : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom โฏ)) (CategoryTheory.inv (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isoRestrict_hom_c_app ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (Xโ : (TopologicalSpace.Opens โโ(Y.restrict โฏ))แตแต) : (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isoRestrict f).hom.c.app Xโ = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj (Opposite.unop Xโ)))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY.toPresheafedSpace) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE โฏ).op - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โX.toTopCat) : CategoryTheory.inv (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โY.toTopCat) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE โฏ).op - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_invApp ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX.toPresheafedSpace) : CategoryTheory.inv (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โX.toTopCat) {Z : CommRingCat} (h : ((TopCat.Presheaf.pushforward CommRingCat f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U)) โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom โฏ)) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX.toPresheafedSpace) {Z : C} (h : ((TopCat.Presheaf.pushforward C f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U)) โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom โฏ)) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY.toPresheafedSpace) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE โฏ).op) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app' ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom โฏ).op - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โY.toTopCat) {Z : CommRingCat} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE โฏ).op) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app'_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom โฏ).op) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.isoRestrict_hom_c_app ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (Xโ : (TopologicalSpace.Opens โโ(Y.restrict โฏ))แตแต) : (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.isoRestrict f).hom.c.app Xโ = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj (Opposite.unop Xโ)))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app' ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY.toPresheafedSpace) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom โฏ).op - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app' ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โY.toTopCat) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom โฏ).op - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app'_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโY.toPresheafedSpace) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom โฏ).op) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_apply ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX) {F : C โ C โ Type uF} {carrier : C โ Type w} {instFunLike : (X Y : C) โ FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom โฏ)) x - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app'_assoc ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โY.toTopCat) (hU : โU โ Set.range โ(CategoryTheory.ConcreteCategory.hom f.base)) {Z : CommRingCat} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) โถ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom โฏ).op) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasLimits C] {ฮน : Type v} (F : CategoryTheory.Functor (CategoryTheory.Discrete ฮน) (AlgebraicGeometry.SheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (i j : CategoryTheory.Discrete ฮน) (h : i โ j) (U : TopologicalSpace.Opens โโ(F.obj i).toPresheafedSpace) : (TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ฮน (F.comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace) j).base).obj ((TopologicalSpace.Opens.map (CategoryTheory.preservesColimitIso AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace F).inv.base).obj (โฏ.functor.obj U)) = โฅ - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_apply ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X โถ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โโX.toPresheafedSpace) {F : C โ C โ Type uF} {carrier : C โ Type w} {instFunLike : (X Y : C) โ FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom โฏ)) x - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst.eq_1 ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.PresheafedSpace C} (f : X โถ Z) [hf : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (g : Y โถ Z) : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.pullbackConeOfLeftFst f g = { base := CategoryTheory.Limits.pullback.fst f.base g.base, c := { app := fun U => CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f (Opposite.unop U)) (CategoryTheory.CategoryStruct.comp (g.c.app (Opposite.op (โฏ.functor.obj (Opposite.unop U)))) (Y.presheaf.map (CategoryTheory.eqToHom โฏ))), naturality := โฏ } } - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_apply ๐ Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X โถ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens โX.toTopCat) (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom โฏ)) x - AlgebraicGeometry.Spec.sheafedSpaceMap_c_app ๐ Mathlib.AlgebraicGeometry.Spec
{R S : CommRingCat} (f : R โถ S) (U : (TopologicalSpace.Opens โโ(AlgebraicGeometry.Spec.sheafedSpaceObj R).toPresheafedSpace)แตแต) : (AlgebraicGeometry.Spec.sheafedSpaceMap f).c.app U = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) (Opposite.unop U) ((TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.topMap f)).obj (Opposite.unop U)) โฏ) - AlgebraicGeometry.Spec.basicOpen_hom_ext ๐ Mathlib.AlgebraicGeometry.Spec
{X : AlgebraicGeometry.RingedSpace} {R : CommRingCat} {ฮฑ ฮฒ : X โถ AlgebraicGeometry.Spec.sheafedSpaceObj R} (w : ฮฑ.base = ฮฒ.base) (h : โ (r : โR), let U := PrimeSpectrum.basicOpen r; CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.StructureSheaf.toOpen (โR) U) (ฮฑ.c.app (Opposite.op U))) (X.presheaf.map (CategoryTheory.eqToHom โฏ)) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.StructureSheaf.toOpen (โR) U) (ฮฒ.c.app (Opposite.op U))) : ฮฑ = ฮฒ - AlgebraicGeometry.Scheme.Hom.id_preimage ๐ Mathlib.AlgebraicGeometry.Scheme
{X : AlgebraicGeometry.Scheme} (U : X.Opens) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X).base).obj U = U - AlgebraicGeometry.Scheme.Hom.iSup_preimage_eq_top ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {ฮน : Sort u_1} {U : ฮน โ Y.Opens} (hU : iSup U = โค) : โจ i, (TopologicalSpace.Opens.map f.base).obj (U i) = โค - AlgebraicGeometry.Scheme.Hom.preimage_iSup_eq_top ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {ฮน : Sort u_1} {U : ฮน โ Y.Opens} (hU : iSup U = โค) : โจ i, (TopologicalSpace.Opens.map f.base).obj (U i) = โค - AlgebraicGeometry.Scheme.Hom.mem_preimage ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {x : โฅX} {U : Y.Opens} : x โ (TopologicalSpace.Opens.map f.base).obj U โ (CategoryTheory.ConcreteCategory.hom f.base) x โ U - AlgebraicGeometry.Scheme.Hom.preimage_bot ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) : (TopologicalSpace.Opens.map f.base).obj โฅ = โฅ - AlgebraicGeometry.Scheme.Hom.preimage_iSup ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {ฮน : Sort u_1} (U : ฮน โ Y.Opens) : (TopologicalSpace.Opens.map f.base).obj (iSup U) = โจ i, (TopologicalSpace.Opens.map f.base).obj (U i) - AlgebraicGeometry.Scheme.Hom.app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) : Y.presheaf.obj (Opposite.op U) โถ X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U)) - AlgebraicGeometry.Scheme.Hom.preimage_top ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) : (TopologicalSpace.Opens.map f.base).obj โค = โค - AlgebraicGeometry.Scheme.Hom.instIsIsoCommRingCatApp ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) [CategoryTheory.IsIso f] (U : Y.Opens) : CategoryTheory.IsIso (AlgebraicGeometry.Scheme.Hom.app f U) - AlgebraicGeometry.SpecMap_preimage_basicOpen ๐ Mathlib.AlgebraicGeometry.Scheme
{R S : CommRingCat} (f : R โถ S) (r : โR) : (TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.map f).base).obj (PrimeSpectrum.basicOpen r) = PrimeSpectrum.basicOpen ((CategoryTheory.ConcreteCategory.hom f) r) - AlgebraicGeometry.Scheme.Hom.coe_preimage ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} : โ((TopologicalSpace.Opens.map f.base).obj U) = โ(CategoryTheory.ConcreteCategory.hom f.base) โปยน' โU - AlgebraicGeometry.Scheme.Hom.preimage_inf ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U V : Y.Opens} : (TopologicalSpace.Opens.map f.base).obj (U โ V) = (TopologicalSpace.Opens.map f.base).obj U โ (TopologicalSpace.Opens.map f.base).obj V - AlgebraicGeometry.Scheme.Hom.preimage_sup ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U V : Y.Opens} : (TopologicalSpace.Opens.map f.base).obj (U โ V) = (TopologicalSpace.Opens.map f.base).obj U โ (TopologicalSpace.Opens.map f.base).obj V - AlgebraicGeometry.Scheme.Hom.preimage_le_preimage_of_le ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} (hUU' : U โค U') : (TopologicalSpace.Opens.map f.base).obj U โค (TopologicalSpace.Opens.map f.base).obj U' - AlgebraicGeometry.Scheme.Hom.preimage_mono ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} (hUU' : U โค U') : (TopologicalSpace.Opens.map f.base).obj U โค (TopologicalSpace.Opens.map f.base).obj U' - AlgebraicGeometry.Scheme.id_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X : AlgebraicGeometry.Scheme} (U : X.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.id X) U = CategoryTheory.CategoryStruct.id (X.presheaf.obj (Opposite.op U)) - AlgebraicGeometry.Scheme.Hom.id_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X : AlgebraicGeometry.Scheme} (U : X.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.id X) U = CategoryTheory.CategoryStruct.id (X.presheaf.obj (Opposite.op U)) - AlgebraicGeometry.Scheme.Hom.appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map f.base).obj U) : Y.presheaf.obj (Opposite.op U) โถ X.presheaf.obj (Opposite.op V) - AlgebraicGeometry.Scheme.preimage_comp ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U = (TopologicalSpace.Opens.map f.base).obj ((TopologicalSpace.Opens.map g.base).obj U) - AlgebraicGeometry.Scheme.Hom.comp_preimage ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U = (TopologicalSpace.Opens.map f.base).obj ((TopologicalSpace.Opens.map g.base).obj U) - AlgebraicGeometry.Scheme.Hom.appLE_eq_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} : AlgebraicGeometry.Scheme.Hom.appLE f U ((TopologicalSpace.Opens.map f.base).obj U) โฏ = AlgebraicGeometry.Scheme.Hom.app f U - AlgebraicGeometry.Scheme.eqToHom_c_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (e : X = Y) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.eqToHom e) U = CategoryTheory.eqToHom โฏ - AlgebraicGeometry.Scheme.Hom.eqToHom_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (e : X = Y) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.eqToHom e) U = CategoryTheory.eqToHom โฏ - AlgebraicGeometry.Scheme.Hom.appLE.congr_simp ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f fโ : X โถ Y) (e_f : f = fโ) (U : Y.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map f.base).obj U) : AlgebraicGeometry.Scheme.Hom.appLE f U V e = AlgebraicGeometry.Scheme.Hom.appLE fโ U V โฏ - AlgebraicGeometry.Scheme.Hom.app_eq_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} : AlgebraicGeometry.Scheme.Hom.app f U = AlgebraicGeometry.Scheme.Hom.appLE f U ((TopologicalSpace.Opens.map f.base).obj U) โฏ - AlgebraicGeometry.Scheme.comp_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) : AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) - AlgebraicGeometry.Scheme.Hom.comp_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) : AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) - AlgebraicGeometry.Scheme.comp_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) - AlgebraicGeometry.Scheme.Hom.comp_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) - AlgebraicGeometry.Scheme.stalkMap_germ ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (x : โฅX) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (AlgebraicGeometry.Scheme.Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) - AlgebraicGeometry.Scheme.Hom.germ_stalkMap ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (x : โฅX) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (AlgebraicGeometry.Scheme.Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) - AlgebraicGeometry.Spec.map_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{R S : CommRingCat} (f : R โถ S) {U : (AlgebraicGeometry.Spec S).Opens} {V : (AlgebraicGeometry.Spec R).Opens} (e : U โค (TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.map f).base).obj V) : AlgebraicGeometry.Scheme.Hom.appLE (AlgebraicGeometry.Spec.map f) V U e = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) V U e) - AlgebraicGeometry.Scheme.Hom.appLE_congr ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (eโ : U = U') (eโ : V = V') (P : {R S : CommRingCat} โ (R โถ S) โ Prop) : P (AlgebraicGeometry.Scheme.Hom.appLE f U V e) โ P (AlgebraicGeometry.Scheme.Hom.appLE f U' V' โฏ) - AlgebraicGeometry.Scheme.Hom.appLE_map' ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} {V V' : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V' โฏ) (X.presheaf.map (CategoryTheory.eqToHom i).op) = AlgebraicGeometry.Scheme.Hom.appLE f U V e - AlgebraicGeometry.Scheme.Hom.map_appLE' ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} {V : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom i).op) (AlgebraicGeometry.Scheme.Hom.appLE f U' V โฏ) = AlgebraicGeometry.Scheme.Hom.appLE f U V e - AlgebraicGeometry.Scheme.Hom.appLE_map ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} {V V' : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V โถ Opposite.op V') : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V e) (X.presheaf.map i) = AlgebraicGeometry.Scheme.Hom.appLE f U V' โฏ - AlgebraicGeometry.Spec.map_app ๐ Mathlib.AlgebraicGeometry.Scheme
{R S : CommRingCat} (f : R โถ S) (U : (AlgebraicGeometry.Spec R).Opens) : AlgebraicGeometry.Scheme.Hom.app (AlgebraicGeometry.Spec.map f) U = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) U ((TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.map f).base).obj U) โฏ) - AlgebraicGeometry.Scheme.comp_appLE_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) {Zโ : CommRingCat} (h : X.presheaf.obj (Opposite.op V) โถ Zโ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) h) - AlgebraicGeometry.Scheme.Hom.comp_appLE_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) {Zโ : CommRingCat} (h : X.presheaf.obj (Opposite.op V) โถ Zโ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) h) - AlgebraicGeometry.Scheme.comp_app_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) {Zโ : CommRingCat} (h : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U)) โถ Zโ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) h) - AlgebraicGeometry.Scheme.Hom.comp_app_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X โถ Y) (g : Y โถ Z) (U : Z.Opens) {Zโ : CommRingCat} (h : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U)) โถ Zโ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) h) - AlgebraicGeometry.Scheme.congr_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} {f g : X โถ Y} (e : f = g) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (X.presheaf.map (CategoryTheory.eqToHom โฏ).op) - AlgebraicGeometry.Scheme.Hom.congr_app ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} {f g : X โถ Y} (e : f = g) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (X.presheaf.map (CategoryTheory.eqToHom โฏ).op) - AlgebraicGeometry.Scheme.Hom.appLE.eq_1 ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (V : X.Opens) (e : V โค (TopologicalSpace.Opens.map f.base).obj U) : AlgebraicGeometry.Scheme.Hom.appLE f U V e = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (X.presheaf.map (CategoryTheory.homOfLE e).op) - AlgebraicGeometry.Scheme.stalkMap_germ_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (x : โฅX) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) {Z : CommRingCat} (h : X.presheaf.stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.stalkMap f x) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) h) - AlgebraicGeometry.Scheme.Hom.germ_stalkMap_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : Y.Opens) (x : โฅX) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x โ U) {Z : CommRingCat} (h : X.presheaf.stalk x โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.stalkMap f x) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) h) - AlgebraicGeometry.Scheme.Hom.appLE_map'_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} {V V' : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V' โฏ) (CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom i).op) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V e) h - AlgebraicGeometry.Scheme.basicOpen_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (U : X.Opens) (V : Y.Opens) (e : U โค (TopologicalSpace.Opens.map f.base).obj V) (s : โ(Y.presheaf.obj (Opposite.op V))) : X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appLE f V U e)) s) = U โ (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen s) - AlgebraicGeometry.Scheme.Hom.map_appLE'_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} {V : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom i).op) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U' V โฏ) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V e) h - AlgebraicGeometry.Scheme.Hom.appLE_map_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} {V V' : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V โถ Opposite.op V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V') โถ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V e) (CategoryTheory.CategoryStruct.comp (X.presheaf.map i) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V' โฏ) h - AlgebraicGeometry.Scheme.preimage_basicOpen ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} (r : โ(Y.presheaf.obj (Opposite.op U))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r) - AlgebraicGeometry.Scheme.Hom.preimage_basicOpen ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} (r : โ(Y.presheaf.obj (Opposite.op U))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r) - AlgebraicGeometry.Scheme.Hom.map_appLE ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} {V : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' โถ Opposite.op U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (AlgebraicGeometry.Scheme.Hom.appLE f U V e) = AlgebraicGeometry.Scheme.Hom.appLE f U' V โฏ - AlgebraicGeometry.Scheme.preimage_basicOpen_top ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (r : โ(Y.presheaf.obj (Opposite.op โค))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appTop f)) r) - AlgebraicGeometry.Scheme.Hom.preimage_basicOpen_top ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) (r : โ(Y.presheaf.obj (Opposite.op โค))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appTop f)) r) - AlgebraicGeometry.Scheme.app_eq ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U V : Y.Opens} (e : U = V) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom โฏ).op) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f V) (X.presheaf.map (CategoryTheory.eqToHom โฏ).op)) - AlgebraicGeometry.Scheme.Hom.app_eq ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U V : Y.Opens} (e : U = V) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom โฏ).op) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f V) (X.presheaf.map (CategoryTheory.eqToHom โฏ).op)) - AlgebraicGeometry.Scheme.Hom.map_appLE_assoc ๐ Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U U' : Y.Opens} {V : X.Opens} (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' โถ Opposite.op U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) โถ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U V e) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f U' V โฏ) h
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c