Loogle!
Result
Found 423 declarations mentioning TopologicalSpace.Opens.map. Of these, only the first 200 are shown.
- TopologicalSpace.Opens.map π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) : CategoryTheory.Functor (TopologicalSpace.Opens βY) (TopologicalSpace.Opens βX) - TopologicalSpace.Opens.map_eq π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X βΆ Y) (h : f = g) : TopologicalSpace.Opens.map f = TopologicalSpace.Opens.map g - TopologicalSpace.Opens.map_id_eq π Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.Functor.id (TopologicalSpace.Opens βX) - TopologicalSpace.Opens.mapMapIso_functor π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X β Y) : (TopologicalSpace.Opens.mapMapIso H).functor = TopologicalSpace.Opens.map H.hom - TopologicalSpace.Opens.mapMapIso_inverse π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X β Y) : (TopologicalSpace.Opens.mapMapIso H).inverse = TopologicalSpace.Opens.map H.inv - IsOpenMap.adjunction π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : IsOpenMap β(CategoryTheory.ConcreteCategory.hom f)) : hf.functor β£ TopologicalSpace.Opens.map f - Topology.IsInducing.adjunction π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : Topology.IsInducing β(CategoryTheory.ConcreteCategory.hom f)) : TopologicalSpace.Opens.map f β£ hf.functor - TopologicalSpace.Opens.mapIso π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X βΆ Y) (h : f = g) : TopologicalSpace.Opens.map f β TopologicalSpace.Opens.map g - TopologicalSpace.Opens.mapId π Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X) β CategoryTheory.Functor.id (TopologicalSpace.Opens βX) - TopologicalSpace.Opens.map_id_obj π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens βX) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj U = U - TopologicalSpace.Opens.map_id_obj_unop π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : (TopologicalSpace.Opens βX)α΅α΅) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj (Opposite.unop U) = Opposite.unop U - TopologicalSpace.Opens.map_id_obj' π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : Set βX) (p : IsOpen U) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).obj { carrier := U, is_open' := p } = { carrier := U, is_open' := p } - TopologicalSpace.Opens.map_comp_eq π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g) = (TopologicalSpace.Opens.map g).comp (TopologicalSpace.Opens.map f) - TopologicalSpace.Opens.map_top π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) : (TopologicalSpace.Opens.map f).obj β€ = β€ - TopologicalSpace.Opens.leMapTop π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) (U : TopologicalSpace.Opens βX) : U βΆ (TopologicalSpace.Opens.map f).obj β€ - Topology.IsInducing.map_functorObj π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : Topology.IsInducing β(CategoryTheory.ConcreteCategory.hom f)) (U : TopologicalSpace.Opens βX) : (TopologicalSpace.Opens.map f).obj (hf.functorObj U) = U - TopologicalSpace.Opens.map_coe π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) (U : TopologicalSpace.Opens βY) : β((TopologicalSpace.Opens.map f).obj U) = β(CategoryTheory.ConcreteCategory.hom f) β»ΒΉ' βU - TopologicalSpace.Opens.mapComp π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) : TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g) β (TopologicalSpace.Opens.map g).comp (TopologicalSpace.Opens.map f) - TopologicalSpace.Opens.op_map_id_obj π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : (TopologicalSpace.Opens βX)α΅α΅) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.id X)).op.obj U = U - Topology.IsInducing.opensGI π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : Topology.IsInducing β(CategoryTheory.ConcreteCategory.hom f)) : GaloisInsertion (TopologicalSpace.Opens.map f).obj hf.functorObj - TopologicalSpace.Opens.mapIso_refl π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) (h : f = f) : TopologicalSpace.Opens.mapIso f f h = CategoryTheory.Iso.refl (TopologicalSpace.Opens.map f) - TopologicalSpace.Opens.map_obj π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) (U : Set βY) (p : IsOpen U) : (TopologicalSpace.Opens.map f).obj { carrier := U, is_open' := p } = { carrier := β(CategoryTheory.ConcreteCategory.hom f) β»ΒΉ' U, is_open' := β― } - Topology.IsInducing.le_functorObj_iff π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : Topology.IsInducing β(CategoryTheory.ConcreteCategory.hom f)) {U : TopologicalSpace.Opens βX} {V : TopologicalSpace.Opens βY} : V β€ hf.functorObj U β (TopologicalSpace.Opens.map f).obj V β€ U - TopologicalSpace.Opens.map_iSup π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) {ΞΉ : Type u_1} (U : ΞΉ β TopologicalSpace.Opens βY) : (TopologicalSpace.Opens.map f).obj (iSup U) = iSup ((TopologicalSpace.Opens.map f).obj β U) - TopologicalSpace.Opens.map_functor_eq' π Mathlib.Topology.Category.TopCat.Opens
{X U : TopCat} (f : U βΆ X) (hf : Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom f)) (V : TopologicalSpace.Opens βU) : (TopologicalSpace.Opens.map f).obj (β―.functor.obj V) = V - TopologicalSpace.Opens.map_comp_obj π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : TopologicalSpace.Opens βZ) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj U = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj U) - TopologicalSpace.Opens.map_comp_obj_unop π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : (TopologicalSpace.Opens βZ)α΅α΅) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj (Opposite.unop U) = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj (Opposite.unop U)) - TopologicalSpace.Opens.map_comp_obj' π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : Set βZ) (p : IsOpen U) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).obj { carrier := U, is_open' := p } = (TopologicalSpace.Opens.map f).obj ((TopologicalSpace.Opens.map g).obj { carrier := U, is_open' := p }) - TopologicalSpace.Opens.functor_obj_map_obj π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} {f : X βΆ Y} (hf : IsOpenMap β(CategoryTheory.ConcreteCategory.hom f)) (U : TopologicalSpace.Opens βY) : hf.functor.obj ((TopologicalSpace.Opens.map f).obj U) = hf.functor.obj β€ β U - TopologicalSpace.Opens.op_map_comp_obj π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : (TopologicalSpace.Opens βZ)α΅α΅) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).op.obj U = (TopologicalSpace.Opens.map f).op.obj ((TopologicalSpace.Opens.map g).op.obj U) - TopologicalSpace.Opens.map.eq_1 π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) : TopologicalSpace.Opens.map f = { obj := fun U => { carrier := β(CategoryTheory.ConcreteCategory.hom f) β»ΒΉ' βU, is_open' := β― }, map := fun {X_1 Y_1} i => { down := { down := β― } }, map_id := β―, map_comp := β― } - TopologicalSpace.Opens.mapId_hom_app π Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) (U : TopologicalSpace.Opens βX) : (TopologicalSpace.Opens.mapId X).hom.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.mapId_inv_app π Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) (U : TopologicalSpace.Opens βX) : (TopologicalSpace.Opens.mapId X).inv.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.mapMapIso_counitIso π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X β Y) : (TopologicalSpace.Opens.mapMapIso H).counitIso = CategoryTheory.NatIso.ofComponents (fun U => CategoryTheory.eqToIso β―) β― - TopologicalSpace.Opens.mapMapIso_unitIso π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (H : X β Y) : (TopologicalSpace.Opens.mapMapIso H).unitIso = CategoryTheory.NatIso.ofComponents (fun U => CategoryTheory.eqToIso β―) β― - TopologicalSpace.Opens.map_comp_map π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) {U V : TopologicalSpace.Opens βZ} (i : U βΆ V) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g)).map i = (TopologicalSpace.Opens.map f).map ((TopologicalSpace.Opens.map g).map i) - TopologicalSpace.Opens.mapComp_hom_app π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : TopologicalSpace.Opens βZ) : (TopologicalSpace.Opens.mapComp f g).hom.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.mapComp_inv_app π Mathlib.Topology.Category.TopCat.Opens
{X Y Z : TopCat} (f : X βΆ Y) (g : Y βΆ Z) (U : TopologicalSpace.Opens βZ) : (TopologicalSpace.Opens.mapComp f g).inv.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.inclusion'_top_functor π Mathlib.Topology.Category.TopCat.Opens
(X : TopCat) : β―.functor = TopologicalSpace.Opens.map (TopologicalSpace.Opens.inclusionTopIso X).inv - TopologicalSpace.Opens.map_homOfLE π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f : X βΆ Y) {U V : TopologicalSpace.Opens βY} (e : U β€ V) : (TopologicalSpace.Opens.map f).map (CategoryTheory.homOfLE e) = CategoryTheory.homOfLE β― - TopologicalSpace.Opens.mapIso_hom_app π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X βΆ Y) (h : f = g) (U : TopologicalSpace.Opens βY) : (TopologicalSpace.Opens.mapIso f g h).hom.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.mapIso_inv_app π Mathlib.Topology.Category.TopCat.Opens
{X Y : TopCat} (f g : X βΆ Y) (h : f = g) (U : TopologicalSpace.Opens βY) : (TopologicalSpace.Opens.mapIso f g h).inv.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.inclusion'_map_eq_top π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens βX) : (TopologicalSpace.Opens.map U.inclusion').obj U = β€ - TopologicalSpace.Opens.functor_map_eq_inf π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U V : TopologicalSpace.Opens βX) : β―.functor.obj ((TopologicalSpace.Opens.map U.inclusion').obj V) = V β U - TopologicalSpace.Opens.map_functor_eq π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} {U : TopologicalSpace.Opens βX} (V : TopologicalSpace.Opens β₯U) : (TopologicalSpace.Opens.map U.inclusion').obj (β―.functor.obj V) = V - TopologicalSpace.Opens.adjunction_counit_app_self π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} (U : TopologicalSpace.Opens βX) : β―.adjunction.counit.app U = CategoryTheory.eqToHom β― - TopologicalSpace.Opens.adjunction_counit_map_functor π Mathlib.Topology.Category.TopCat.Opens
{X : TopCat} {U : TopologicalSpace.Opens βX} (V : TopologicalSpace.Opens β₯U) : β―.adjunction.counit.app (β―.functor.obj V) = CategoryTheory.eqToHom β― - TopCat.Presheaf.pushforward_obj_obj π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (f : X βΆ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.pushforward C f).obj G).obj Xβ = G.obj (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop Xβ))) - TopCat.Presheaf.pushforwardEq.eq_1 π Mathlib.Topology.Sheaves.Presheaf
{C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} {f g : X βΆ Y} (h : f = g) (β± : TopCat.Presheaf C X) : TopCat.Presheaf.pushforwardEq h β± = CategoryTheory.isoWhiskerRight (CategoryTheory.NatIso.op (TopologicalSpace.Opens.mapIso f g h).symm) β± - TopCat.Presheaf.pushforward_map_app' π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (f : X βΆ Y) {β± π’ : TopCat.Presheaf C X} (Ξ± : β± βΆ π’) {U : (TopologicalSpace.Opens βY)α΅α΅} : ((TopCat.Presheaf.pushforward C f).map Ξ±).app U = Ξ±.app (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop U))) - TopCat.Presheaf.presheafEquivOfIso_functor_obj_obj π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.obj G).obj Xβ = G.obj (Opposite.op ((TopologicalSpace.Opens.map H.hom).obj (Opposite.unop Xβ))) - TopCat.Presheaf.presheafEquivOfIso_inverse_obj_obj π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βY)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βX)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.obj G).obj Xβ = G.obj (Opposite.op ((TopologicalSpace.Opens.map H.inv).obj (Opposite.unop Xβ))) - TopCat.Presheaf.pushforward_map_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (f : X βΆ Y) {Xβ Yβ : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C} (Ξ± : Xβ βΆ Yβ) (XβΒΉ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.pushforward C f).map Ξ±).app XβΒΉ = Ξ±.app (Opposite.op ((TopologicalSpace.Opens.map f).obj (Opposite.unop XβΒΉ))) - TopCat.Presheaf.pushforward_obj_map π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (f : X βΆ Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) {Xβ Yβ : (TopologicalSpace.Opens βY)α΅α΅} (fβ : Xβ βΆ Yβ) : ((TopCat.Presheaf.pushforward C f).obj G).map fβ = G.map ((TopologicalSpace.Opens.map f).map fβ.unop).op - TopCat.Presheaf.presheafEquivOfIso_functor_map_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) {Xβ Yβ : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C} (Ξ± : Xβ βΆ Yβ) (XβΒΉ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.map Ξ±).app XβΒΉ = Ξ±.app (Opposite.op ((TopologicalSpace.Opens.map H.hom).obj (Opposite.unop XβΒΉ))) - TopCat.Presheaf.presheafEquivOfIso_inverse_map_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) {Xβ Yβ : CategoryTheory.Functor (TopologicalSpace.Opens βY)α΅α΅ C} (Ξ± : Xβ βΆ Yβ) (XβΒΉ : (TopologicalSpace.Opens βX)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.map Ξ±).app XβΒΉ = Ξ±.app (Opposite.op ((TopologicalSpace.Opens.map H.inv).obj (Opposite.unop XβΒΉ))) - TopCat.Presheaf.presheafEquivOfIso_functor_obj_map π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) {Xβ Yβ : (TopologicalSpace.Opens βY)α΅α΅} (f : Xβ βΆ Yβ) : ((TopCat.Presheaf.presheafEquivOfIso C H).functor.obj G).map f = G.map ((TopologicalSpace.Opens.map H.hom).map f.unop).op - TopCat.Presheaf.presheafEquivOfIso_inverse_obj_map π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (G : CategoryTheory.Functor (TopologicalSpace.Opens βY)α΅α΅ C) {Xβ Yβ : (TopologicalSpace.Opens βX)α΅α΅} (f : Xβ βΆ Yβ) : ((TopCat.Presheaf.presheafEquivOfIso C H).inverse.obj G).map f = G.map ((TopologicalSpace.Opens.map H.inv).map f.unop).op - TopCat.Presheaf.pushforwardEq_hom_app π Mathlib.Topology.Sheaves.Presheaf
{C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} {f g : X βΆ Y} (h : f = g) (β± : TopCat.Presheaf C X) (U : (TopologicalSpace.Opens βY)α΅α΅) : (TopCat.Presheaf.pushforwardEq h β±).hom.app U = β±.map (CategoryTheory.eqToHom β―) - TopCat.Presheaf.pushforwardToOfIso_app π Mathlib.Topology.Sheaves.Presheaf
{C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {X Y : TopCat} (Hβ : X β Y) {β± : TopCat.Presheaf C Y} {π’ : TopCat.Presheaf C X} (Hβ : β± βΆ (TopCat.Presheaf.pushforward C Hβ.hom).obj π’) (U : (TopologicalSpace.Opens βX)α΅α΅) : (TopCat.Presheaf.pushforwardToOfIso Hβ Hβ).app U = CategoryTheory.CategoryStruct.comp (Hβ.app (Opposite.op ((TopologicalSpace.Opens.map Hβ.inv).obj (Opposite.unop U)))) (π’.map (CategoryTheory.eqToHom β―)) - TopCat.Presheaf.toPushforwardOfIso_app π Mathlib.Topology.Sheaves.Presheaf
{C : Type u_1} [CategoryTheory.Category.{u_5, u_1} C] {X Y : TopCat} (Hβ : X β Y) {β± : TopCat.Presheaf C X} {π’ : TopCat.Presheaf C Y} (Hβ : (TopCat.Presheaf.pushforward C Hβ.hom).obj β± βΆ π’) (U : (TopologicalSpace.Opens βX)α΅α΅) : (TopCat.Presheaf.toPushforwardOfIso Hβ Hβ).app U = CategoryTheory.CategoryStruct.comp (β±.map (CategoryTheory.eqToHom β―)) (Hβ.app (Opposite.op ((TopologicalSpace.Opens.map Hβ.inv).obj (Opposite.unop U)))) - TopCat.Presheaf.presheafEquivOfIso_counitIso_hom_app_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (Xβ : CategoryTheory.Functor (TopologicalSpace.Opens βY)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).counitIso.hom.app Xβ).app Xβ = Xβ.map (CategoryTheory.eqToHom β―) - TopCat.Presheaf.presheafEquivOfIso_unitIso_hom_app_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (Xβ : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βX)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).unitIso.hom.app Xβ).app Xβ = Xβ.map (CategoryTheory.eqToHom β―) - TopCat.Presheaf.presheafEquivOfIso_counitIso_inv_app_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (Xβ : CategoryTheory.Functor (TopologicalSpace.Opens βY)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βY)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).counitIso.inv.app Xβ).app Xβ = Xβ.map (CategoryTheory.eqToHom β―) - TopCat.Presheaf.presheafEquivOfIso_unitIso_inv_app_app π Mathlib.Topology.Sheaves.Presheaf
(C : Type u_1) [CategoryTheory.Category.{u_4, u_1} C] {X Y : TopCat} (H : X β Y) (Xβ : CategoryTheory.Functor (TopologicalSpace.Opens βX)α΅α΅ C) (Xβ : (TopologicalSpace.Opens βX)α΅α΅) : ((TopCat.Presheaf.presheafEquivOfIso C H).unitIso.inv.app Xβ).app Xβ = Xβ.map (CategoryTheory.eqToHom β―) - AlgebraicGeometry.PresheafedSpace.comp_c_app π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y Z : AlgebraicGeometry.PresheafedSpace C} (Ξ± : X βΆ Y) (Ξ² : Y βΆ Z) (U : (TopologicalSpace.Opens ββZ)α΅α΅) : (CategoryTheory.CategoryStruct.comp Ξ± Ξ²).c.app U = CategoryTheory.CategoryStruct.comp (Ξ².c.app U) (Ξ±.c.app (Opposite.op ((TopologicalSpace.Opens.map Ξ².base).obj (Opposite.unop U)))) - AlgebraicGeometry.PresheafedSpace.comp_c_app_assoc π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y Z : AlgebraicGeometry.PresheafedSpace C} (Ξ± : X βΆ Y) (Ξ² : Y βΆ Z) (U : (TopologicalSpace.Opens ββZ)α΅α΅) {Zβ : C} (h : ((TopCat.Presheaf.pushforward C (CategoryTheory.CategoryStruct.comp Ξ± Ξ²).base).obj X.presheaf).obj U βΆ Zβ) : CategoryTheory.CategoryStruct.comp ((CategoryTheory.CategoryStruct.comp Ξ± Ξ²).c.app U) h = CategoryTheory.CategoryStruct.comp (Ξ².c.app U) (CategoryTheory.CategoryStruct.comp (Ξ±.c.app (Opposite.op ((TopologicalSpace.Opens.map Ξ².base).obj (Opposite.unop U)))) h) - AlgebraicGeometry.PresheafedSpace.Hom.ext π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (Ξ± Ξ² : X.Hom Y) (w : Ξ±.base = Ξ².base) (h : CategoryTheory.CategoryStruct.comp Ξ±.c (CategoryTheory.whiskerRight (CategoryTheory.eqToHom β―) X.presheaf) = Ξ².c) : Ξ± = Ξ² - AlgebraicGeometry.PresheafedSpace.ext π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (Ξ± Ξ² : X βΆ Y) (w : Ξ±.base = Ξ².base) (h : CategoryTheory.CategoryStruct.comp Ξ±.c (CategoryTheory.whiskerRight (CategoryTheory.eqToHom β―) X.presheaf) = Ξ².c) : Ξ± = Ξ² - AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {U : TopCat} (X : AlgebraicGeometry.PresheafedSpace C) {f : U βΆ βX} (h : Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom f)) (V : (TopologicalSpace.Opens ββX)α΅α΅) : (X.ofRestrict h).c.app V = X.presheaf.map (β―.adjunction.counit.app (Opposite.unop V)).op - AlgebraicGeometry.PresheafedSpace.congr_app π Mathlib.Geometry.RingedSpace.PresheafedSpace
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : AlgebraicGeometry.PresheafedSpace C} {Ξ± Ξ² : X βΆ Y} (h : Ξ± = Ξ²) (U : (TopologicalSpace.Opens ββY)α΅α΅) : Ξ±.c.app U = CategoryTheory.CategoryStruct.comp (Ξ².c.app U) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_obj π Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (U : TopologicalSpace.Opens ββ(CategoryTheory.Limits.colimit F)) (j : Jα΅α΅) : (AlgebraicGeometry.PresheafedSpace.componentwiseDiagram F U).obj j = (F.obj (Opposite.unop j)).presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ΞΉ F (Opposite.unop j)).base).obj U)) - AlgebraicGeometry.PresheafedSpace.componentwiseDiagram_map π Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (U : TopologicalSpace.Opens ββ(CategoryTheory.Limits.colimit F)) {j k : Jα΅α΅} (f : j βΆ k) : (AlgebraicGeometry.PresheafedSpace.componentwiseDiagram F U).map f = CategoryTheory.CategoryStruct.comp ((F.map f.unop).c.app (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ΞΉ F (Opposite.unop j)).base).obj U))) ((F.obj (Opposite.unop k)).presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.descCApp.eq_1 π Mathlib.Geometry.RingedSpace.PresheafedSpace.HasColimits
{J : Type u'} [CategoryTheory.Category.{v', u'} J] {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimitsOfShape J TopCat] [β (X : TopCat), CategoryTheory.Limits.HasLimitsOfShape Jα΅α΅ (TopCat.Presheaf C X)] [CategoryTheory.Limits.HasLimitsOfShape Jα΅α΅ C] (F : CategoryTheory.Functor J (AlgebraicGeometry.PresheafedSpace C)) (s : CategoryTheory.Limits.Cocone F) (U : (TopologicalSpace.Opens ββs.pt)α΅α΅) : AlgebraicGeometry.PresheafedSpace.ColimitCoconeIsColimit.descCApp F s U = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.lift ((AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit F).leftOp.comp ((CategoryTheory.evaluation (TopologicalSpace.Opens β(CategoryTheory.Limits.colimit (F.comp (AlgebraicGeometry.PresheafedSpace.forget C))))α΅α΅ C).obj ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.desc (F.comp (AlgebraicGeometry.PresheafedSpace.forget C)) ((AlgebraicGeometry.PresheafedSpace.forget C).mapCocone s))).op.obj U))) { pt := s.pt.presheaf.obj U, Ο := { app := fun j => CategoryTheory.CategoryStruct.comp ((s.ΞΉ.app (Opposite.unop j)).c.app U) ((F.obj (Opposite.unop j)).presheaf.map (CategoryTheory.eqToHom β―)), naturality := β― } }) (CategoryTheory.Limits.limitObjIsoLimitCompEvaluation (AlgebraicGeometry.PresheafedSpace.pushforwardDiagramToColimit F).leftOp ((TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.desc (F.comp (AlgebraicGeometry.PresheafedSpace.forget C)) ((AlgebraicGeometry.PresheafedSpace.forget C).mapCocone s))).op.obj U)).inv - TopologicalSpace.OpenNhds.inclusionMapIso π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) : (TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f) β (TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x) - TopologicalSpace.OpenNhds.map_obj π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) (U : TopologicalSpace.Opens βY) (q : (CategoryTheory.ConcreteCategory.hom f) x β U) : (TopologicalSpace.OpenNhds.map f x).obj { obj := U, property := q } = { obj := (TopologicalSpace.Opens.map f).obj U, property := q } - TopologicalSpace.OpenNhds.inclusionMapIso_inv π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.map f x).comp (TopologicalSpace.OpenNhds.inclusion x)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).comp (TopologicalSpace.Opens.map f)) - TopologicalSpace.OpenNhds.inclusionMapIso_inv_app π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) (Xβ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv.app Xβ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.OpenNhds.inclusion x).obj ((TopologicalSpace.OpenNhds.map f x).obj Xβ)) - TopologicalSpace.OpenNhds.inclusionMapIso_hom_app π Mathlib.Topology.Category.TopCat.OpenNhds
{X Y : TopCat} (f : X βΆ Y) (x : βX) (Xβ : TopologicalSpace.OpenNhds ((CategoryTheory.ConcreteCategory.hom f) x)) : (TopologicalSpace.OpenNhds.inclusionMapIso f x).hom.app Xβ = CategoryTheory.CategoryStruct.id ((TopologicalSpace.Opens.map f).obj ((TopologicalSpace.OpenNhds.inclusion ((CategoryTheory.ConcreteCategory.hom f) x)).obj Xβ)) - instRepresentablyFlatOpensCarrierMap π Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X βΆ Y) : CategoryTheory.RepresentablyFlat (TopologicalSpace.Opens.map f) - compatiblePreserving_opens_map π Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X βΆ Y) : CategoryTheory.CompatiblePreserving (Opens.grothendieckTopology βX) (TopologicalSpace.Opens.map f) - coverPreserving_opens_map π Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X βΆ Y) : CategoryTheory.CoverPreserving (Opens.grothendieckTopology βY) (Opens.grothendieckTopology βX) (TopologicalSpace.Opens.map f) - instIsContinuousOpensCarrierMapGrothendieckTopology π Mathlib.Topology.Sheaves.SheafCondition.Sites
{X Y : TopCat} (f : X βΆ Y) : (TopologicalSpace.Opens.map f).IsContinuous (Opens.grothendieckTopology βY) (Opens.grothendieckTopology βX) - TopCat.Presheaf.pushforwardPullbackAdjunction.eq_1 π Mathlib.Topology.Sheaves.Stalks
(C : Type u_1) [CategoryTheory.Category.{v, u_1} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) : TopCat.Presheaf.pushforwardPullbackAdjunction C f = (TopologicalSpace.Opens.map f).op.lanAdjunction C - TopCat.Presheaf.stalkPushforward_germ π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens βY) (x : βX) (hx : (CategoryTheory.ConcreteCategory.hom f) x β U) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx) (TopCat.Presheaf.stalkPushforward C f F x) = F.germ ((TopologicalSpace.Opens.map f).obj U) x hx - TopCat.Presheaf.stalkPushforward_germ_assoc π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens βY) (x : βX) (hx : (CategoryTheory.ConcreteCategory.hom f) x β U) {Z : C} (h : F.stalk x βΆ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.stalkPushforward C f F x) h) = CategoryTheory.CategoryStruct.comp (F.germ ((TopologicalSpace.Opens.map f).obj U) x hx) h - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (V : (TopologicalSpace.Opens βY)α΅α΅) (x : βX) (hx : (CategoryTheory.ConcreteCategory.hom f) x β Opposite.unop V) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app V) (TopCat.Presheaf.germToPullbackStalk C f F ((TopologicalSpace.Opens.map f).obj (Opposite.unop V)) x hx) = F.germ (Opposite.unop V) ((CategoryTheory.ConcreteCategory.hom f) x) hx - TopCat.Presheaf.germ_stalkPullbackHom π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (x : βX) (U : TopologicalSpace.Opens βY) (hU : (CategoryTheory.ConcreteCategory.hom f) x β U) : CategoryTheory.CategoryStruct.comp (F.germ U ((CategoryTheory.ConcreteCategory.hom f) x) hU) (TopCat.Presheaf.stalkPullbackHom C f F x) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op U)) (((TopCat.Presheaf.pullback C f).obj F).germ ((TopologicalSpace.Opens.map f).obj U) x hU) - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_app_app_germToPullbackStalk_assoc π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (V : (TopologicalSpace.Opens βY)α΅α΅) (x : βX) (hx : (CategoryTheory.ConcreteCategory.hom f) x β Opposite.unop V) {Z : C} (h : F.stalk ((CategoryTheory.ConcreteCategory.hom f) x) βΆ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app V) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.germToPullbackStalk C f F ((TopologicalSpace.Opens.map f).obj (Opposite.unop V)) x hx) h) = CategoryTheory.CategoryStruct.comp (F.germ (Opposite.unop V) ((CategoryTheory.ConcreteCategory.hom f) x) hx) h - TopCat.Presheaf.germ_stalkPullbackHom_assoc π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (x : βX) (U : TopologicalSpace.Opens βY) (hU : (CategoryTheory.ConcreteCategory.hom f) x β U) {Z : C} (h : ((TopCat.Presheaf.pullback C f).obj F).stalk x βΆ Z) : CategoryTheory.CategoryStruct.comp (F.germ U ((CategoryTheory.ConcreteCategory.hom f) x) hU) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.stalkPullbackHom C f F x) h) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).germ ((TopologicalSpace.Opens.map f).obj U) x hU) h) - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (U : TopologicalSpace.Opens βX) (x : βX) (hx : x β U) (V : TopologicalSpace.Opens βY) (hV : U β€ (TopologicalSpace.Opens.map f).obj V) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) (TopCat.Presheaf.germToPullbackStalk C f F U x hx)) = F.germ V ((CategoryTheory.ConcreteCategory.hom f) x) β― - TopCat.Presheaf.pushforwardPullbackAdjunction_unit_pullback_map_germToPullbackStalk_assoc π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C Y) (U : TopologicalSpace.Opens βX) (x : βX) (hx : x β U) (V : TopologicalSpace.Opens βY) (hV : U β€ (TopologicalSpace.Opens.map f).obj V) {Z : C} (h : F.stalk ((CategoryTheory.ConcreteCategory.hom f) x) βΆ Z) : CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) (CategoryTheory.CategoryStruct.comp (TopCat.Presheaf.germToPullbackStalk C f F U x hx) h)) = CategoryTheory.CategoryStruct.comp (F.germ V ((CategoryTheory.ConcreteCategory.hom f) x) β―) h - TopCat.Presheaf.stalkPushforward_germ_apply π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C X) (U : TopologicalSpace.Opens βY) (x : βX) (hx : (CategoryTheory.ConcreteCategory.hom f) x β U) {Fβ : C β C β Type uF} {carrier : C β Type w} {instFunLike : (X Y : C) β FunLike (Fβ X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C Fβ] (xβ : CategoryTheory.ToType (((TopCat.Presheaf.pushforward C f).obj F).obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (TopCat.Presheaf.stalkPushforward C f F x)) ((CategoryTheory.ConcreteCategory.hom (((TopCat.Presheaf.pushforward C f).obj F).germ U ((CategoryTheory.ConcreteCategory.hom f) x) hx)) xβ) = (F.germ ((TopologicalSpace.Opens.map f).obj U) x hx) xβ - TopCat.Presheaf.pullback_obj_obj_ext π Mathlib.Topology.Sheaves.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} {Z : C} {f : X βΆ Y} {F : TopCat.Presheaf C Y} (U : (TopologicalSpace.Opens βX)α΅α΅) {Ο Ο : ((TopCat.Presheaf.pullback C f).obj F).obj U βΆ Z} (h : β (V : TopologicalSpace.Opens βY) (hV : Opposite.unop U β€ (TopologicalSpace.Opens.map f).obj V), CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) Ο) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) Ο)) : Ο = Ο - TopCat.Presheaf.pullback_obj_obj_ext_iff π Mathlib.Topology.Sheaves.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} {Z : C} {f : X βΆ Y} {F : TopCat.Presheaf C Y} {U : (TopologicalSpace.Opens βX)α΅α΅} {Ο Ο : ((TopCat.Presheaf.pullback C f).obj F).obj U βΆ Z} : Ο = Ο β β (V : TopologicalSpace.Opens βY) (hV : Opposite.unop U β€ (TopologicalSpace.Opens.map f).obj V), CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) Ο) = CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pushforwardPullbackAdjunction C f).unit.app F).app (Opposite.op V)) (CategoryTheory.CategoryStruct.comp (((TopCat.Presheaf.pullback C f).obj F).map (CategoryTheory.homOfLE hV).op) Ο) - TopCat.Presheaf.stalkPushforward.eq_1 π Mathlib.Topology.Sheaves.Stalks
(C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : TopCat} (f : X βΆ Y) (F : TopCat.Presheaf C X) (x : βX) : TopCat.Presheaf.stalkPushforward C f F x = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colim.map (CategoryTheory.whiskerRight (CategoryTheory.NatTrans.op (TopologicalSpace.OpenNhds.inclusionMapIso f x).inv) F)) (CategoryTheory.Limits.colimit.pre (((CategoryTheory.whiskeringLeft (TopologicalSpace.OpenNhds x)α΅α΅ (TopologicalSpace.Opens βX)α΅α΅ C).obj (TopologicalSpace.OpenNhds.inclusion x).op).obj F) (TopologicalSpace.OpenNhds.map f x).op) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ π Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (Ξ± : X βΆ Y) (U : TopologicalSpace.Opens ββY) (x : ββX) (hx : (CategoryTheory.ConcreteCategory.hom Ξ±.base) x β U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom Ξ±.base) x) hx) (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap Ξ± x) = CategoryTheory.CategoryStruct.comp (Ξ±.c.app (Opposite.op U)) (X.presheaf.germ ((TopologicalSpace.Opens.map Ξ±.base).obj U) x hx) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ_assoc π Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (Ξ± : X βΆ Y) (U : TopologicalSpace.Opens ββY) (x : ββX) (hx : (CategoryTheory.ConcreteCategory.hom Ξ±.base) x β U) {Z : C} (h : X.presheaf.stalk x βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom Ξ±.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap Ξ± x) h) = CategoryTheory.CategoryStruct.comp (Ξ±.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map Ξ±.base).obj U) x hx) h) - AlgebraicGeometry.PresheafedSpace.stalkMap_germ_apply π Mathlib.Geometry.RingedSpace.Stalks
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasColimits C] {X Y : AlgebraicGeometry.PresheafedSpace C} (Ξ± : X βΆ Y) (U : TopologicalSpace.Opens ββY) (x : ββX) (hx : (CategoryTheory.ConcreteCategory.hom Ξ±.base) x β U) {F : C β C β Type uF} {carrier : C β Type w} {instFunLike : (X Y : C) β FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (xβ : CategoryTheory.ToType (Y.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap Ξ± x)) ((CategoryTheory.ConcreteCategory.hom (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom Ξ±.base) x) hx)) xβ) = (CategoryTheory.ConcreteCategory.hom (X.presheaf.germ ((TopologicalSpace.Opens.map Ξ±.base).obj U) x hx)) ((CategoryTheory.ConcreteCategory.hom (Ξ±.c.app (Opposite.op U))) xβ) - AlgebraicGeometry.SheafedSpace.comp_c_app π Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.SheafedSpace C} (Ξ± : X βΆ Y) (Ξ² : Y βΆ Z) (U : (TopologicalSpace.Opens ββZ.toPresheafedSpace)α΅α΅) : (CategoryTheory.CategoryStruct.comp Ξ± Ξ²).c.app U = CategoryTheory.CategoryStruct.comp (Ξ².c.app U) (Ξ±.c.app (Opposite.op ((TopologicalSpace.Opens.map Ξ².base).obj (Opposite.unop U)))) - AlgebraicGeometry.SheafedSpace.comp_c_app' π Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y Z : AlgebraicGeometry.SheafedSpace C} (Ξ± : X βΆ Y) (Ξ² : Y βΆ Z) (U : TopologicalSpace.Opens ββZ.toPresheafedSpace) : (CategoryTheory.CategoryStruct.comp Ξ± Ξ²).c.app (Opposite.op U) = CategoryTheory.CategoryStruct.comp (Ξ².c.app (Opposite.op U)) (Ξ±.c.app (Opposite.op ((TopologicalSpace.Opens.map Ξ².base).obj U))) - AlgebraicGeometry.SheafedSpace.ofRestrict_c_app π Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {U : TopCat} (X : AlgebraicGeometry.SheafedSpace C) {f : U βΆ βX.toPresheafedSpace} (h : Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom f)) (V : (TopologicalSpace.Opens ββX.toPresheafedSpace)α΅α΅) : (X.ofRestrict h).c.app V = X.presheaf.map (β―.adjunction.counit.app (Opposite.unop V)).op - AlgebraicGeometry.SheafedSpace.ext π Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (Ξ± Ξ² : X βΆ Y) (w : Ξ±.base = Ξ².base) (h : CategoryTheory.CategoryStruct.comp Ξ±.c (CategoryTheory.whiskerRight (CategoryTheory.eqToHom β―) X.presheaf) = Ξ².c) : Ξ± = Ξ² - AlgebraicGeometry.SheafedSpace.congr_app π Mathlib.Geometry.RingedSpace.SheafedSpace
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} {Ξ± Ξ² : X βΆ Y} (h : Ξ± = Ξ²) (U : (TopologicalSpace.Opens ββY.toPresheafedSpace)α΅α΅) : Ξ±.c.app U = CategoryTheory.CategoryStruct.comp (Ξ².c.app U) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ π Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) (U : TopologicalSpace.Opens βY.toTopCat) (x : βX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_assoc π Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) (U : TopologicalSpace.Opens βY.toTopCat) (x : βX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) {Z : CommRingCat} (h : X.presheaf.stalk x βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x) h) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) h) - AlgebraicGeometry.LocallyRingedSpace.comp_c_app π Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y Z : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) (g : Y βΆ Z) (U : (TopologicalSpace.Opens βZ.toTopCat)α΅α΅) : (CategoryTheory.CategoryStruct.comp f g).c.app U = CategoryTheory.CategoryStruct.comp (g.c.app U) (f.c.app (Opposite.op ((TopologicalSpace.Opens.map g.base).obj (Opposite.unop U)))) - AlgebraicGeometry.LocallyRingedSpace.preimage_basicOpen π Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) {U : TopologicalSpace.Opens βY.toTopCat} (s : β(Y.presheaf.obj (Opposite.op U))) : (TopologicalSpace.Opens.map f.base).obj (Y.toRingedSpace.basicOpen s) = X.toRingedSpace.basicOpen ((CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op U))) s) - AlgebraicGeometry.LocallyRingedSpace.stalkMap_germ_apply π Mathlib.Geometry.RingedSpace.LocallyRingedSpace
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) (U : TopologicalSpace.Opens βY.toTopCat) (x : βX.toTopCat) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) (y : β(Y.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x)) ((CategoryTheory.ConcreteCategory.hom (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx)) y) = (CategoryTheory.ConcreteCategory.hom (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx)) ((CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op U))) y) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_invApp_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE β―).op) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY.toPresheafedSpace) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βY.toTopCat) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app' π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom β―).op - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp.eq_1 π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX) : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom β―)) (CategoryTheory.inv (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isoRestrict_hom_c_app π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (Xβ : (TopologicalSpace.Opens ββ(Y.restrict β―))α΅α΅) : (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.isoRestrict f).hom.c.app Xβ = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj (Opposite.unop Xβ)))) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.app_inv_app'_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom β―).op) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_invApp_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY.toPresheafedSpace) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE β―).op) h - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_invApp_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βY.toTopCat) {Z : CommRingCat} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE β―).op) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app' π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY.toPresheafedSpace) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom β―).op - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app' π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βY.toTopCat) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) = Y.presheaf.map (CategoryTheory.eqToHom β―).op - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.isoRestrict_hom_c_app π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (Xβ : (TopologicalSpace.Opens ββ(Y.restrict β―))α΅α΅) : (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.isoRestrict f).hom.c.app Xβ = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj (Opposite.unop Xβ)))) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.app_inv_app'_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββY.toPresheafedSpace) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) {Z : C} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom β―).op) h - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.app_inv_app'_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βY.toTopCat) (hU : βU β Set.range β(CategoryTheory.ConcreteCategory.hom f.base)) {Z : CommRingCat} (h : Y.presheaf.obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj ((TopologicalSpace.Opens.map f.base).obj U))) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op U)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f ((TopologicalSpace.Opens.map f.base).obj U)) h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom β―).op) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom β―) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.inv_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX) : CategoryTheory.inv (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX) {Z : C} (h : ((TopCat.Presheaf.pushforward C f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)) βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom β―)) h - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βX.toTopCat) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom β―) - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.inv_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βX.toTopCat) : CategoryTheory.inv (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.image_preimage_is_empty π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasLimits C] {ΞΉ : Type v} (F : CategoryTheory.Functor (CategoryTheory.Discrete ΞΉ) (AlgebraicGeometry.SheafedSpace C)) [CategoryTheory.Limits.HasColimit F] (i j : CategoryTheory.Discrete ΞΉ) (h : i β j) (U : TopologicalSpace.Opens ββ(F.obj i).toPresheafedSpace) : (TopologicalSpace.Opens.map (CategoryTheory.Limits.colimit.ΞΉ (F.comp AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace) j).base).obj ((TopologicalSpace.Opens.map (CategoryTheory.preservesColimitIso AlgebraicGeometry.SheafedSpace.forgetToPresheafedSpace F).inv.base).obj (β―.functor.obj U)) = β₯ - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX.toPresheafedSpace) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) = X.presheaf.map (CategoryTheory.eqToHom β―) - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βX.toTopCat) {Z : CommRingCat} (h : ((TopCat.Presheaf.pushforward CommRingCat f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U)) βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom β―)) h - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.inv_invApp π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX.toPresheafedSpace) : CategoryTheory.inv (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) = CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) (X.presheaf.map (CategoryTheory.eqToHom β―)) - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_assoc π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX.toPresheafedSpace) {Z : C} (h : ((TopCat.Presheaf.pushforward C f.base).obj X.presheaf).obj (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U)) βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U) (CategoryTheory.CategoryStruct.comp (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U))) h) = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom β―)) h - AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp_app_apply π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.PresheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX) {F : C β C β Type uF} {carrier : C β Type w} {instFunLike : (X Y : C) β FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom β―)) x - AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp_app_apply π Mathlib.Geometry.RingedSpace.OpenImmersion
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : AlgebraicGeometry.SheafedSpace C} (f : X βΆ Y) [H : AlgebraicGeometry.SheafedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens ββX.toPresheafedSpace) {F : C β C β Type uF} {carrier : C β Type w} {instFunLike : (X Y : C) β FunLike (F X Y) (carrier X) (carrier Y)} [inst : CategoryTheory.ConcreteCategory C F] (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.SheafedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.SheafedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom β―)) x - AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp_app_apply π Mathlib.Geometry.RingedSpace.OpenImmersion
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X βΆ Y) [H : AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion f] (U : TopologicalSpace.Opens βX.toTopCat) (x : CategoryTheory.ToType (X.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (f.c.app (Opposite.op ((AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.opensFunctor f).obj U)))) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.invApp f U)) x) = (X.presheaf.map (CategoryTheory.eqToHom β―)) x - AlgebraicGeometry.Spec.sheafedSpaceMap_c_app π Mathlib.AlgebraicGeometry.Spec
{R S : CommRingCat} (f : R βΆ S) (U : (TopologicalSpace.Opens ββ(AlgebraicGeometry.Spec.sheafedSpaceObj R).toPresheafedSpace)α΅α΅) : (AlgebraicGeometry.Spec.sheafedSpaceMap f).c.app U = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) (Opposite.unop U) ((TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.topMap f)).obj (Opposite.unop U)) β―) - AlgebraicGeometry.Spec.basicOpen_hom_ext π Mathlib.AlgebraicGeometry.Spec
{X : AlgebraicGeometry.RingedSpace} {R : CommRingCat} {Ξ± Ξ² : X βΆ AlgebraicGeometry.Spec.sheafedSpaceObj R} (w : Ξ±.base = Ξ².base) (h : β (r : βR), let U := PrimeSpectrum.basicOpen r; CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.StructureSheaf.toOpen (βR) U) (Ξ±.c.app (Opposite.op U))) (X.presheaf.map (CategoryTheory.eqToHom β―)) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.StructureSheaf.toOpen (βR) U) (Ξ².c.app (Opposite.op U))) : Ξ± = Ξ² - AlgebraicGeometry.Scheme.Hom.preimage_iSup_eq_top π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {ΞΉ : Sort u_1} {U : ΞΉ β Y.Opens} (hU : iSup U = β€) : β¨ i, (TopologicalSpace.Opens.map f.base).obj (U i) = β€ - AlgebraicGeometry.Scheme.Hom.preimage_iSup π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {ΞΉ : Sort u_1} (U : ΞΉ β Y.Opens) : (TopologicalSpace.Opens.map f.base).obj (iSup U) = β¨ i, (TopologicalSpace.Opens.map f.base).obj (U i) - AlgebraicGeometry.Scheme.Hom.app π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (U : Y.Opens) : Y.presheaf.obj (Opposite.op U) βΆ X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U)) - AlgebraicGeometry.Scheme.instIsIsoCommRingCatApp π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [CategoryTheory.IsIso f] (U : Y.Opens) : CategoryTheory.IsIso (AlgebraicGeometry.Scheme.Hom.app f U) - AlgebraicGeometry.Scheme.Hom.preimage_le_preimage_of_le π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} (hUU' : U β€ U') : (TopologicalSpace.Opens.map f.base).obj U β€ (TopologicalSpace.Opens.map f.base).obj U' - AlgebraicGeometry.Scheme.Hom.appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) : Y.presheaf.obj (Opposite.op U) βΆ X.presheaf.obj (Opposite.op V) - AlgebraicGeometry.Scheme.id_app π Mathlib.AlgebraicGeometry.Scheme
{X : AlgebraicGeometry.Scheme} (U : X.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.id X) U = CategoryTheory.CategoryStruct.id (X.presheaf.obj (Opposite.op U)) - AlgebraicGeometry.Scheme.preimage_comp π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) : (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U = (TopologicalSpace.Opens.map f.base).obj ((TopologicalSpace.Opens.map g.base).obj U) - AlgebraicGeometry.Scheme.Hom.appLE_eq_app π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} : f.appLE U ((TopologicalSpace.Opens.map f.base).obj U) β― = f.app U - AlgebraicGeometry.Scheme.Hom.app_eq_appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} : f.app U = f.appLE U ((TopologicalSpace.Opens.map f.base).obj U) β― - AlgebraicGeometry.Spec.map_appLE π Mathlib.AlgebraicGeometry.Scheme
{R S : CommRingCat} (f : R βΆ S) {U : (AlgebraicGeometry.Spec S).Opens} {V : (AlgebraicGeometry.Spec R).Opens} (e : U β€ (TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.map f).base).obj V) : AlgebraicGeometry.Scheme.Hom.appLE (AlgebraicGeometry.Spec.map f) V U e = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) V U e) - AlgebraicGeometry.Scheme.stalkMap_germ π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (U : Y.Opens) (x : ββX.toPresheafedSpace) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (AlgebraicGeometry.Scheme.Hom.stalkMap f x) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) - AlgebraicGeometry.Scheme.comp_appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) (V : X.Opens) (e : V β€ (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) : AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) - AlgebraicGeometry.Scheme.Hom.appLE_congr π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (eβ : U = U') (eβ : V = V') (P : {R S : CommRingCat} β (R βΆ S) β Prop) : P (f.appLE U V e) β P (f.appLE U' V' β―) - AlgebraicGeometry.Scheme.Hom.appLE_map' π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') : CategoryTheory.CategoryStruct.comp (f.appLE U V' β―) (X.presheaf.map (CategoryTheory.eqToHom i).op) = f.appLE U V e - AlgebraicGeometry.Scheme.Hom.map_appLE' π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom i).op) (f.appLE U' V β―) = f.appLE U V e - AlgebraicGeometry.Scheme.Hom.appLE_map π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V βΆ Opposite.op V') : CategoryTheory.CategoryStruct.comp (f.appLE U V e) (X.presheaf.map i) = f.appLE U V' β― - AlgebraicGeometry.Scheme.eqToHom_c_app π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (e : X = Y) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.eqToHom e) U = CategoryTheory.eqToHom β― - AlgebraicGeometry.Scheme.comp_app π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) - AlgebraicGeometry.Scheme.stalkMap_germ_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (U : Y.Opens) (x : ββX.toPresheafedSpace) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) {Z : CommRingCat} (h : X.presheaf.stalk x βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.stalkMap f x) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (CategoryTheory.CategoryStruct.comp (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx) h) - AlgebraicGeometry.Spec.map_app π Mathlib.AlgebraicGeometry.Scheme
{R S : CommRingCat} (f : R βΆ S) (U : (AlgebraicGeometry.Spec R).Opens) : AlgebraicGeometry.Scheme.Hom.app (AlgebraicGeometry.Spec.map f) U = CommRingCat.ofHom (AlgebraicGeometry.StructureSheaf.comap (CommRingCat.Hom.hom f) U ((TopologicalSpace.Opens.map (AlgebraicGeometry.Spec.map f).base).obj U) β―) - AlgebraicGeometry.Scheme.preimage_basicOpen_top π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (r : β(Y.presheaf.obj (Opposite.op β€))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appTop f)) r) - AlgebraicGeometry.Scheme.Hom.appLE_map'_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : V = V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) βΆ Z) : CategoryTheory.CategoryStruct.comp (f.appLE U V' β―) (CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom i).op) h) = CategoryTheory.CategoryStruct.comp (f.appLE U V e) h - AlgebraicGeometry.Scheme.Hom.map_appLE'_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : U' = U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom i).op) (CategoryTheory.CategoryStruct.comp (f.appLE U' V β―) h) = CategoryTheory.CategoryStruct.comp (f.appLE U V e) h - AlgebraicGeometry.Scheme.comp_appLE_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) (V : X.Opens) (e : V β€ (TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U) {Zβ : CommRingCat} (h : X.presheaf.obj (Opposite.op V) βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U V e) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE f ((TopologicalSpace.Opens.map g.base).obj U) V e) h) - AlgebraicGeometry.Scheme.Hom.appLE_map_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U : Y.Opens} {V V' : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op V βΆ Opposite.op V') {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V') βΆ Z) : CategoryTheory.CategoryStruct.comp (f.appLE U V e) (CategoryTheory.CategoryStruct.comp (X.presheaf.map i) h) = CategoryTheory.CategoryStruct.comp (f.appLE U V' β―) h - AlgebraicGeometry.Scheme.basicOpen_appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (U : X.Opens) (V : Y.Opens) (e : U β€ (TopologicalSpace.Opens.map f.base).obj V) (s : β(Y.presheaf.obj (Opposite.op V))) : X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appLE f V U e)) s) = U β (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen s) - AlgebraicGeometry.Scheme.Hom.appLE.eq_1 π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) : f.appLE U V e = CategoryTheory.CategoryStruct.comp (f.app U) (X.presheaf.map (CategoryTheory.homOfLE e).op) - AlgebraicGeometry.Scheme.comp_app_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) {Zβ : CommRingCat} (h : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map (CategoryTheory.CategoryStruct.comp f g).base).obj U)) βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.CategoryStruct.comp f g) U) h = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map g.base).obj U)) h) - AlgebraicGeometry.Scheme.Hom.map_appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' βΆ Opposite.op U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (f.appLE U V e) = f.appLE U' V β― - AlgebraicGeometry.Scheme.preimage_basicOpen π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) {U : Y.Opens} (r : β(Y.presheaf.obj (Opposite.op U))) : (TopologicalSpace.Opens.map f.base).obj (Y.basicOpen r) = X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r) - AlgebraicGeometry.Scheme.congr_app π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} {f g : X βΆ Y} (e : f = g) (U : Y.Opens) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app g U) (X.presheaf.map (CategoryTheory.eqToHom β―).op) - AlgebraicGeometry.Scheme.Hom.map_appLE_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} {V : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj U) (i : Opposite.op U' βΆ Opposite.op U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op V) βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (CategoryTheory.CategoryStruct.comp (f.appLE U V e) h) = CategoryTheory.CategoryStruct.comp (f.appLE U' V β―) h - AlgebraicGeometry.Scheme.appLE_comp_appLE π Mathlib.AlgebraicGeometry.Scheme
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Y) (g : Y βΆ Z) (U : Z.Opens) (V : Y.Opens) (W : X.Opens) (eβ : V β€ (TopologicalSpace.Opens.map g.base).obj U) (eβ : W β€ (TopologicalSpace.Opens.map f.base).obj V) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appLE g U V eβ) (AlgebraicGeometry.Scheme.Hom.appLE f V W eβ) = AlgebraicGeometry.Scheme.Hom.appLE (CategoryTheory.CategoryStruct.comp f g) U W β― - AlgebraicGeometry.Scheme.Hom.naturality π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} (i : Opposite.op U' βΆ Opposite.op U) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (f.app U) = CategoryTheory.CategoryStruct.comp (f.app U') (X.presheaf.map ((TopologicalSpace.Opens.map f.base).map i.unop).op) - AlgebraicGeometry.Scheme.Hom.naturality_assoc π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) {U U' : Y.Opens} (i : Opposite.op U' βΆ Opposite.op U) {Z : CommRingCat} (h : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U)) βΆ Z) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map i) (CategoryTheory.CategoryStruct.comp (f.app U) h) = CategoryTheory.CategoryStruct.comp (f.app U') (CategoryTheory.CategoryStruct.comp (X.presheaf.map ((TopologicalSpace.Opens.map f.base).map i.unop).op) h) - AlgebraicGeometry.Scheme.app_eq π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) {U V : Y.Opens} (e : U = V) : AlgebraicGeometry.Scheme.Hom.app f U = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.eqToHom β―).op) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f V) (X.presheaf.map (CategoryTheory.eqToHom β―).op)) - AlgebraicGeometry.Scheme.stalkMap_germ_apply π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (U : Y.Opens) (x : ββX.toPresheafedSpace) (hx : (CategoryTheory.ConcreteCategory.hom f.base) x β U) (y : β(Y.presheaf.obj (Opposite.op U))) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.stalkMap f x)) ((CategoryTheory.ConcreteCategory.hom (Y.presheaf.germ U ((CategoryTheory.ConcreteCategory.hom f.base) x) hx)) y) = (CategoryTheory.ConcreteCategory.hom (X.presheaf.germ ((TopologicalSpace.Opens.map f.base).obj U) x hx)) ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) y) - AlgebraicGeometry.Scheme.inv_app π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [CategoryTheory.IsIso f] (U : X.Opens) : AlgebraicGeometry.Scheme.Hom.app (CategoryTheory.inv f) U = CategoryTheory.CategoryStruct.comp (X.presheaf.map (CategoryTheory.eqToHom β―).op) (CategoryTheory.inv (AlgebraicGeometry.Scheme.Hom.app f ((TopologicalSpace.Opens.map (CategoryTheory.inv f).base).obj U))) - AlgebraicGeometry.Scheme.preimage_zeroLocus π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) {U : Y.Opens} (s : Set β(Y.presheaf.obj (Opposite.op U))) : β(CategoryTheory.ConcreteCategory.hom f.base) β»ΒΉ' Y.zeroLocus s = X.zeroLocus (β(CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.app f U)) '' s) - AlgebraicGeometry.Scheme.Hom.ext π Mathlib.AlgebraicGeometry.Scheme
{X Y : AlgebraicGeometry.Scheme} {f g : X βΆ Y} (h_base : f.base = g.base) (h_app : β (U : Y.Opens), CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (X.presheaf.map (CategoryTheory.eqToHom β―).op) = AlgebraicGeometry.Scheme.Hom.app g U) : f = g - AlgebraicGeometry.Scheme.Spec_map_presheaf_map_eqToHom π Mathlib.AlgebraicGeometry.Scheme
{X : AlgebraicGeometry.Scheme} {U V : X.Opens} (h : U = V) (W : (AlgebraicGeometry.Spec (X.presheaf.obj (Opposite.op V))).Opens) : AlgebraicGeometry.Scheme.Hom.app (AlgebraicGeometry.Spec.map (X.presheaf.map (CategoryTheory.eqToHom h).op)) W = CategoryTheory.eqToHom β― - AlgebraicGeometry.Scheme.Hom.image_preimage_eq_opensRange_inter π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [H : AlgebraicGeometry.IsOpenImmersion f] (U : Y.Opens) : f.opensFunctor.obj ((TopologicalSpace.Opens.map f.base).obj U) = f.opensRange β U - AlgebraicGeometry.Scheme.Hom.preimage_opensRange π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [AlgebraicGeometry.IsOpenImmersion f] : (TopologicalSpace.Opens.map f.base).obj f.opensRange = β€ - AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_fst_of_right π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Z) (g : Y βΆ Z) [H : AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.Scheme.Hom.opensRange (CategoryTheory.Limits.pullback.fst g f) = (TopologicalSpace.Opens.map g.base).obj (AlgebraicGeometry.Scheme.Hom.opensRange f) - AlgebraicGeometry.IsOpenImmersion.opensRange_pullback_snd_of_left π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Z) (g : Y βΆ Z) [H : AlgebraicGeometry.IsOpenImmersion f] : AlgebraicGeometry.Scheme.Hom.opensRange (CategoryTheory.Limits.pullback.snd f g) = (TopologicalSpace.Opens.map g.base).obj (AlgebraicGeometry.Scheme.Hom.opensRange f) - AlgebraicGeometry.IsOpenImmersion.opensEquiv_symm_apply π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : { U // U β€ AlgebraicGeometry.Scheme.Hom.opensRange f }) : (AlgebraicGeometry.IsOpenImmersion.opensEquiv f).symm U = (TopologicalSpace.Opens.map f.base).obj βU - AlgebraicGeometry.Scheme.Hom.preimage_image_eq π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [H : AlgebraicGeometry.IsOpenImmersion f] (U : X.Opens) : (TopologicalSpace.Opens.map f.base).obj (f.opensFunctor.obj U) = U - AlgebraicGeometry.IsOpenImmersion.range_pullback_snd_of_left π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Z) (g : Y βΆ Z) [H : AlgebraicGeometry.IsOpenImmersion f] : Set.range β(CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.pullback.snd f g).base) = ((TopologicalSpace.Opens.map g.base).obj (AlgebraicGeometry.Scheme.Hom.opensRange f)).carrier - AlgebraicGeometry.IsOpenImmersion.ΞIso π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : Y.Opens) : X.presheaf.obj (Opposite.op ((TopologicalSpace.Opens.map f.base).obj U)) β Y.presheaf.obj (Opposite.op (AlgebraicGeometry.Scheme.Hom.opensRange f β U)) - AlgebraicGeometry.Scheme.Hom.isIso_app π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [H : AlgebraicGeometry.IsOpenImmersion f] (V : Y.Opens) (hV : V β€ f.opensRange) : CategoryTheory.IsIso (f.app V) - AlgebraicGeometry.IsOpenImmersion.image_preimage_eq_preimage_image_of_isPullback π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y U V : AlgebraicGeometry.Scheme} {f : X βΆ Y} {f' : U βΆ V} {iU : U βΆ X} {iV : V βΆ Y} [AlgebraicGeometry.IsOpenImmersion iV] [AlgebraicGeometry.IsOpenImmersion iU] (H : CategoryTheory.IsPullback f' iU iV f) (W : V.Opens) : (AlgebraicGeometry.Scheme.Hom.opensFunctor iU).obj ((TopologicalSpace.Opens.map f'.base).obj W) = (TopologicalSpace.Opens.map f.base).obj ((AlgebraicGeometry.Scheme.Hom.opensFunctor iV).obj W) - AlgebraicGeometry.IsOpenImmersion.app_eq_invApp_app_of_comp_eq_aux π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y U : AlgebraicGeometry.Scheme} (f : Y βΆ U) (g : U βΆ X) (fg : Y βΆ X) (H : fg = CategoryTheory.CategoryStruct.comp f g) [h : AlgebraicGeometry.IsOpenImmersion g] (V : U.Opens) : (TopologicalSpace.Opens.map f.base).obj V = (TopologicalSpace.Opens.map fg.base).obj ((AlgebraicGeometry.Scheme.Hom.opensFunctor g).obj V) - AlgebraicGeometry.IsOpenImmersion.range_pullback_fst_of_right π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Z) (g : Y βΆ Z) [H : AlgebraicGeometry.IsOpenImmersion f] : Set.range β(CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.pullback.fst g f).base) = ((TopologicalSpace.Opens.map g.base).obj { carrier := Set.range β(CategoryTheory.ConcreteCategory.hom f.base), is_open' := β― }).carrier - AlgebraicGeometry.Scheme.Hom.appIso_hom' π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [H : AlgebraicGeometry.IsOpenImmersion f] (U : X.Opens) : (f.appIso U).hom = f.appLE (f.opensFunctor.obj U) U β― - AlgebraicGeometry.IsOpenImmersion.ΞIso_hom_map π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : Y.Opens) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (AlgebraicGeometry.IsOpenImmersion.ΞIso f U).hom = Y.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.Scheme.ofRestrict_appLE π Mathlib.AlgebraicGeometry.OpenImmersion
{U : TopCat} (X : AlgebraicGeometry.Scheme) {f : U βΆ TopCat.of ββX.toPresheafedSpace} (h : Topology.IsOpenEmbedding β(CategoryTheory.ConcreteCategory.hom f)) (V : X.Opens) (W : (X.restrict h).Opens) (e : W β€ (TopologicalSpace.Opens.map (X.ofRestrict h).base).obj V) : AlgebraicGeometry.Scheme.Hom.appLE (X.ofRestrict h) V W e = X.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.IsOpenImmersion.map_ΞIso_inv π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : Y.Opens) : CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE β―).op) (AlgebraicGeometry.IsOpenImmersion.ΞIso f U).inv = AlgebraicGeometry.Scheme.Hom.app f U - AlgebraicGeometry.Scheme.Hom.appIso_inv_appLE π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] {U V : X.Opens} (e : V β€ (TopologicalSpace.Opens.map f.base).obj ((AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj U)) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.appIso f U).inv (AlgebraicGeometry.Scheme.Hom.appLE f ((AlgebraicGeometry.Scheme.Hom.opensFunctor f).obj U) V e) = X.presheaf.map (CategoryTheory.homOfLE β―).op - AlgebraicGeometry.IsOpenImmersion.ΞIso_hom_map_assoc π Mathlib.AlgebraicGeometry.OpenImmersion
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.IsOpenImmersion f] (U : Y.Opens) {Z : CommRingCat} (h : Y.presheaf.obj (Opposite.op (AlgebraicGeometry.Scheme.Hom.opensRange f β U)) βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.IsOpenImmersion.ΞIso f U).hom h) = CategoryTheory.CategoryStruct.comp (Y.presheaf.map (CategoryTheory.homOfLE β―).op) h
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08