Loogle!
Result
Found 19 declarations mentioning Topology.RelCWComplex.map.
- Topology.RelCWComplex.map π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : PartialEquiv (Fin n β β) X - Topology.RelCWComplex.map_zero_mem_closedCell π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : β(Topology.RelCWComplex.map n i) 0 β Topology.RelCWComplex.closedCell n i - Topology.RelCWComplex.map_zero_mem_openCell π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : β(Topology.RelCWComplex.map n i) 0 β Topology.RelCWComplex.openCell n i - Topology.RelCWComplex.closedCell_zero_eq_singleton π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] {j : Topology.RelCWComplex.cell C 0} : Topology.RelCWComplex.closedCell 0 j = {β(Topology.RelCWComplex.map 0 j) ![]} - Topology.RelCWComplex.openCell_zero_eq_singleton π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] {j : Topology.RelCWComplex.cell C 0} : Topology.RelCWComplex.openCell 0 j = {β(Topology.RelCWComplex.map 0 j) ![]} - Topology.RelCWComplex.continuousOn_symm π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : ContinuousOn (β(Topology.RelCWComplex.map n i).symm) (Topology.RelCWComplex.map n i).target - Topology.RelCWComplex.source_eq π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : (Topology.RelCWComplex.map n i).source = Metric.ball 0 1 - Topology.RelCWComplex.cellFrontier.eq_1 π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : Topology.RelCWComplex.cellFrontier n i = β(Topology.RelCWComplex.map n i) '' Metric.sphere 0 1 - Topology.RelCWComplex.closedCell.eq_1 π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : Topology.RelCWComplex.closedCell n i = β(Topology.RelCWComplex.map n i) '' Metric.closedBall 0 1 - Topology.RelCWComplex.openCell.eq_1 π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C D : Set X} [Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : Topology.RelCWComplex.openCell n i = β(Topology.RelCWComplex.map n i) '' Metric.ball 0 1 - Topology.RelCWComplex.continuousOn π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : ContinuousOn (β(Topology.RelCWComplex.map n i)) (Metric.closedBall 0 1) - Topology.RelCWComplex.union' π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] : D βͺ β n, β j, β(Topology.RelCWComplex.map n j) '' Metric.closedBall 0 1 = C - Topology.RelCWComplex.disjointBase' π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : Disjoint (β(Topology.RelCWComplex.map n i) '' Metric.ball 0 1) D - Topology.RelCWComplex.closed' π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (A : Set X) (asubc : A β C) : (β (n : β) (j : Topology.RelCWComplex.cell C n), IsClosed (A β© β(Topology.RelCWComplex.map n j) '' Metric.closedBall 0 1)) β§ IsClosed (A β© D) β IsClosed A - Topology.RelCWComplex.mapsTo π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : β I, Set.MapsTo (β(Topology.RelCWComplex.map n i)) (Metric.sphere 0 1) (D βͺ β m, β (_ : m < n), β j β I m, β(Topology.RelCWComplex.map m j) '' Metric.closedBall 0 1) - Topology.RelCWComplex.mapsto π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] (n : β) (i : Topology.RelCWComplex.cell C n) : β I, Set.MapsTo (β(Topology.RelCWComplex.map n i)) (Metric.sphere 0 1) (D βͺ β m, β (_ : m < n), β j β I m, β(Topology.RelCWComplex.map m j) '' Metric.closedBall 0 1) - Topology.RelCWComplex.pairwiseDisjoint' π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u} {instβ : TopologicalSpace X} {C : Set X} {D : outParam (Set X)} [self : Topology.RelCWComplex C D] : Set.univ.PairwiseDisjoint fun ni => β(Topology.RelCWComplex.map ni.fst ni.snd) '' Metric.ball 0 1 - Topology.CWComplex.mapsTo π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C : Set X} [Topology.CWComplex C] (n : β) (i : Topology.RelCWComplex.cell C n) : β I, Set.MapsTo (β(Topology.RelCWComplex.map n i)) (Metric.sphere 0 1) (β m, β (_ : m < n), β j β I m, β(Topology.RelCWComplex.map m j) '' Metric.closedBall 0 1) - Topology.CWComplex.mapsto π Mathlib.Topology.CWComplex.Classical.Basic
{X : Type u_1} [t : TopologicalSpace X] {C : Set X} [Topology.CWComplex C] (n : β) (i : Topology.RelCWComplex.cell C n) : β I, Set.MapsTo (β(Topology.RelCWComplex.map n i)) (Metric.sphere 0 1) (β m, β (_ : m < n), β j β I m, β(Topology.RelCWComplex.map m j) '' Metric.closedBall 0 1)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65