Loogle!
Result
Found 44 declarations mentioning TrivSqZeroExt and TopologicalSpace.
- TrivSqZeroExt.instTopologicalSpace π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] : TopologicalSpace (TrivSqZeroExt R M) - TrivSqZeroExt.continuous_fst π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] : Continuous TrivSqZeroExt.fst - TrivSqZeroExt.continuous_snd π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] : Continuous TrivSqZeroExt.snd - TrivSqZeroExt.instT2Space π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [T2Space R] [T2Space M] : T2Space (TrivSqZeroExt R M) - TrivSqZeroExt.continuous_inl π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] : Continuous TrivSqZeroExt.inl - TrivSqZeroExt.continuous_inr π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] : Continuous TrivSqZeroExt.inr - TrivSqZeroExt.embedding_inl π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] : Topology.IsEmbedding TrivSqZeroExt.inl - TrivSqZeroExt.embedding_inr π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] : Topology.IsEmbedding TrivSqZeroExt.inr - TrivSqZeroExt.IsEmbedding.inl π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] : Topology.IsEmbedding TrivSqZeroExt.inl - TrivSqZeroExt.IsEmbedding.inr π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] : Topology.IsEmbedding TrivSqZeroExt.inr - TrivSqZeroExt.instContinuousAdd π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Add R] [Add M] [ContinuousAdd R] [ContinuousAdd M] : ContinuousAdd (TrivSqZeroExt R M) - TrivSqZeroExt.instContinuousNeg π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Neg R] [Neg M] [ContinuousNeg R] [ContinuousNeg M] : ContinuousNeg (TrivSqZeroExt R M) - TrivSqZeroExt.instContinuousConstSMul π Mathlib.Topology.Instances.TrivSqZeroExt
{S : Type u_2} {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [SMul S R] [SMul S M] [ContinuousConstSMul S R] [ContinuousConstSMul S M] : ContinuousConstSMul S (TrivSqZeroExt R M) - TrivSqZeroExt.instContinuousSMul π Mathlib.Topology.Instances.TrivSqZeroExt
{S : Type u_2} {R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [TopologicalSpace S] [SMul S R] [SMul S M] [ContinuousSMul S R] [ContinuousSMul S M] : ContinuousSMul S (TrivSqZeroExt R M) - TrivSqZeroExt.hasSum_fst π Mathlib.Topology.Instances.TrivSqZeroExt
{Ξ± : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : Ξ± β TrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) : HasSum (fun x => (f x).fst) a.fst - TrivSqZeroExt.hasSum_snd π Mathlib.Topology.Instances.TrivSqZeroExt
{Ξ± : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : Ξ± β TrivSqZeroExt R M} {a : TrivSqZeroExt R M} (h : HasSum f a) : HasSum (fun x => (f x).snd) a.snd - TrivSqZeroExt.nhds_def π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] (x : TrivSqZeroExt R M) : nhds x = nhds x.fst ΓΛ’ nhds x.snd - TrivSqZeroExt.nhds_inl π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero M] (x : R) : nhds (TrivSqZeroExt.inl x) = nhds x ΓΛ’ nhds 0 - TrivSqZeroExt.nhds_inr π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Zero R] (m : M) : nhds (TrivSqZeroExt.inr m) = nhds 0 ΓΛ’ nhds m - TrivSqZeroExt.instContinuousMulOfContinuousSMulMulOppositeOfContinuousAdd π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Mul R] [Add M] [SMul R M] [SMul Rα΅α΅α΅ M] [ContinuousMul R] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [ContinuousAdd M] : ContinuousMul (TrivSqZeroExt R M) - TrivSqZeroExt.hasSum_inl π Mathlib.Topology.Instances.TrivSqZeroExt
{Ξ± : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : Ξ± β R} {a : R} (h : HasSum f a) : HasSum (fun x => TrivSqZeroExt.inl (f x)) (TrivSqZeroExt.inl a) - TrivSqZeroExt.hasSum_inr π Mathlib.Topology.Instances.TrivSqZeroExt
{Ξ± : Type u_1} {R : Type u_3} (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid R] [AddCommMonoid M] {f : Ξ± β M} {a : M} (h : HasSum f a) : HasSum (fun x => TrivSqZeroExt.inr (f x)) (TrivSqZeroExt.inr a) - TrivSqZeroExt.inrCLM π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] : M βL[R] TrivSqZeroExt R M - TrivSqZeroExt.sndCLM π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] : TrivSqZeroExt R M βL[R] M - TrivSqZeroExt.fstCLM π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] : TrivSqZeroExt R M βL[R] R - TrivSqZeroExt.inlCLM π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] : R βL[R] TrivSqZeroExt R M - TrivSqZeroExt.topologicalSemiring π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Semiring R] [AddCommMonoid M] [Module R M] [Module Rα΅α΅α΅ M] [IsTopologicalSemiring R] [ContinuousAdd M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] : IsTopologicalSemiring (TrivSqZeroExt R M) - TrivSqZeroExt.sndCLM_apply π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (x : TrivSqZeroExt R M) : (TrivSqZeroExt.sndCLM R M) x = x.snd - TrivSqZeroExt.inrCLM_apply π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (m : M) : (TrivSqZeroExt.inrCLM R M) m = TrivSqZeroExt.inr m - TrivSqZeroExt.instIsTopologicalRingOfIsTopologicalAddGroupOfContinuousSMulMulOpposite π Mathlib.Topology.Instances.TrivSqZeroExt
{R : Type u_3} {M : Type u_4} [TopologicalSpace R] [TopologicalSpace M] [Ring R] [AddCommGroup M] [Module R M] [Module Rα΅α΅α΅ M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] : IsTopologicalRing (TrivSqZeroExt R M) - TrivSqZeroExt.fstCLM_apply π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (x : TrivSqZeroExt R M) : (TrivSqZeroExt.fstCLM R M) x = x.fst - TrivSqZeroExt.inlCLM_apply π Mathlib.Topology.Instances.TrivSqZeroExt
(R : Type u_3) (M : Type u_4) [TopologicalSpace R] [TopologicalSpace M] [CommSemiring R] [AddCommMonoid M] [Module R M] (r : R) : (TrivSqZeroExt.inlCLM R M) r = TrivSqZeroExt.inl r - TrivSqZeroExt.exp_inl π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : R) : NormedSpace.exp π (TrivSqZeroExt.inl x) = TrivSqZeroExt.inl (NormedSpace.exp π x) - TrivSqZeroExt.exp_inr π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (m : M) : NormedSpace.exp π (TrivSqZeroExt.inr m) = 1 + TrivSqZeroExt.inr m - TrivSqZeroExt.exp_def_of_smul_comm π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst β’ x.snd = x.fst β’ x.snd) : NormedSpace.exp π x = TrivSqZeroExt.inl (NormedSpace.exp π x.fst) + TrivSqZeroExt.inr (NormedSpace.exp π x.fst β’ x.snd) - TrivSqZeroExt.fst_expSeries π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] (x : TrivSqZeroExt R M) (n : β) : ((NormedSpace.expSeries π (TrivSqZeroExt R M) n) fun x_1 => x).fst = (NormedSpace.expSeries π R n) fun x_1 => x.fst - TrivSqZeroExt.fst_exp π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [CommRing R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [IsScalarTower π R M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) : (NormedSpace.exp π x).fst = NormedSpace.exp π x.fst - TrivSqZeroExt.snd_exp π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [CommRing R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [IsScalarTower π R M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) : (NormedSpace.exp π x).snd = NormedSpace.exp π x.fst β’ x.snd - TrivSqZeroExt.hasSum_snd_expSeries_of_smul_comm π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst β’ x.snd = x.fst β’ x.snd) {e : R} (h : HasSum (fun n => (NormedSpace.expSeries π R n) fun x_1 => x.fst) e) : HasSum (fun n => ((NormedSpace.expSeries π (TrivSqZeroExt R M) n) fun x_1 => x).snd) (e β’ x.snd) - TrivSqZeroExt.exp_def π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [CommRing R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [IsScalarTower π R M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) : NormedSpace.exp π x = TrivSqZeroExt.inl (NormedSpace.exp π x.fst) + TrivSqZeroExt.inr (NormedSpace.exp π x.fst β’ x.snd) - TrivSqZeroExt.hasSum_expSeries_of_smul_comm π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst β’ x.snd = x.fst β’ x.snd) {e : R} (h : HasSum (fun n => (NormedSpace.expSeries π R n) fun x_1 => x.fst) e) : HasSum (fun n => (NormedSpace.expSeries π (TrivSqZeroExt R M) n) fun x_1 => x) (TrivSqZeroExt.inl e + TrivSqZeroExt.inr (e β’ x.snd)) - TrivSqZeroExt.eq_smul_exp_of_invertible π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [CommRing R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [IsScalarTower π R M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) [Invertible x.fst] : x = x.fst β’ NormedSpace.exp π (β x.fst β’ TrivSqZeroExt.inr x.snd) - TrivSqZeroExt.snd_expSeries_of_smul_comm π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Ring R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [SMulCommClass R Rα΅α΅α΅ M] [IsScalarTower π R M] [IsScalarTower π Rα΅α΅α΅ M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] (x : TrivSqZeroExt R M) (hx : MulOpposite.op x.fst β’ x.snd = x.fst β’ x.snd) (n : β) : ((NormedSpace.expSeries π (TrivSqZeroExt R M) (n + 1)) fun x_1 => x).snd = ((NormedSpace.expSeries π R n) fun x_1 => x.fst) β’ x.snd - TrivSqZeroExt.eq_smul_exp_of_ne_zero π Mathlib.Analysis.Normed.Algebra.TrivSqZeroExt
(π : Type u_1) {R : Type u_3} {M : Type u_4} [Field π] [CharZero π] [Field R] [AddCommGroup M] [Algebra π R] [Module π M] [Module R M] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [IsScalarTower π R M] [TopologicalSpace R] [TopologicalSpace M] [IsTopologicalRing R] [IsTopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rα΅α΅α΅ M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) (hx : x.fst β 0) : x = x.fst β’ NormedSpace.exp π (x.fstβ»ΒΉ β’ TrivSqZeroExt.inr x.snd)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65