Loogle!
Result
Found 13 declarations mentioning TrivSqZeroExt.map.
- TrivSqZeroExt.map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : TrivSqZeroExt R' M ββ[R'] TrivSqZeroExt R' N - TrivSqZeroExt.map_id π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] : TrivSqZeroExt.map LinearMap.id = AlgHom.id R' (TrivSqZeroExt R' M) - TrivSqZeroExt.fst_map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) (x : TrivSqZeroExt R' M) : ((TrivSqZeroExt.map f) x).fst = x.fst - TrivSqZeroExt.map_inl π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) (r : R') : (TrivSqZeroExt.map f) (TrivSqZeroExt.inl r) = TrivSqZeroExt.inl r - TrivSqZeroExt.snd_map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) (x : TrivSqZeroExt R' M) : ((TrivSqZeroExt.map f) x).snd = f x.snd - TrivSqZeroExt.map_inr π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) (x : M) : (TrivSqZeroExt.map f) (TrivSqZeroExt.inr x) = TrivSqZeroExt.inr (f x) - TrivSqZeroExt.map_comp_map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} {P : Type u_4} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] [AddCommMonoid P] [Module R' P] [Module R'α΅α΅α΅ P] [IsCentralScalar R' P] (f : M ββ[R'] N) (g : N ββ[R'] P) : TrivSqZeroExt.map (g ββ f) = (TrivSqZeroExt.map g).comp (TrivSqZeroExt.map f) - TrivSqZeroExt.map_comp_inlAlgHom π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : (TrivSqZeroExt.map f).comp (TrivSqZeroExt.inlAlgHom R' R' M) = TrivSqZeroExt.inlAlgHom R' R' N - TrivSqZeroExt.sndHom_comp_map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : TrivSqZeroExt.sndHom R' N ββ (TrivSqZeroExt.map f).toLinearMap = f ββ TrivSqZeroExt.sndHom R' M - TrivSqZeroExt.map_comp_inrHom π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : (TrivSqZeroExt.map f).toLinearMap ββ TrivSqZeroExt.inrHom R' M = TrivSqZeroExt.inrHom R' N ββ f - TrivSqZeroExt.fstHom_comp_map π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : (TrivSqZeroExt.fstHom R' R' N).comp (TrivSqZeroExt.map f) = TrivSqZeroExt.fstHom R' R' M - TrivSqZeroExt.map.eq_1 π Mathlib.Algebra.TrivSqZeroExt
{R' : Type u} {M : Type v} [CommSemiring R'] [AddCommMonoid M] [Module R' M] [Module R'α΅α΅α΅ M] [IsCentralScalar R' M] {N : Type u_3} [AddCommMonoid N] [Module R' N] [Module R'α΅α΅α΅ N] [IsCentralScalar R' N] (f : M ββ[R'] N) : TrivSqZeroExt.map f = TrivSqZeroExt.liftEquivOfComm β¨TrivSqZeroExt.inrHom R' N ββ f, β―β© - ExteriorAlgebra.toTrivSqZeroExt_comp_map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [Module Rα΅α΅α΅ N] [IsCentralScalar R N] (f : M ββ[R] N) : ExteriorAlgebra.toTrivSqZeroExt.comp (ExteriorAlgebra.map f) = (TrivSqZeroExt.map f).comp ExteriorAlgebra.toTrivSqZeroExt
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65