Loogle!
Result
Found 11 declarations mentioning Ultrafilter.map.
- Ultrafilter.map 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} (m : α → β) (f : Ultrafilter α) : Ultrafilter β - Ultrafilter.map_id 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} (f : Ultrafilter α) : Ultrafilter.map id f = f - Ultrafilter.map_id' 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} (f : Ultrafilter α) : Ultrafilter.map (fun x => x) f = f - Ultrafilter.coe_map 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} (m : α → β) (f : Ultrafilter α) : ↑(Ultrafilter.map m f) = Filter.map m ↑f - Ultrafilter.map_pure 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} (m : α → β) (a : α) : Ultrafilter.map m (pure a) = pure (m a) - Ultrafilter.map_map 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} {γ : Type u_1} (f : Ultrafilter α) (m : α → β) (n : β → γ) : Ultrafilter.map n (Ultrafilter.map m f) = Ultrafilter.map (n ∘ m) f - Ultrafilter.mem_map 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} {m : α → β} {f : Ultrafilter α} {s : Set β} : s ∈ Ultrafilter.map m f ↔ m ⁻¹' s ∈ f - Ultrafilter.ofComapInfPrincipal_eq_of_map 📋 Mathlib.Order.Filter.Ultrafilter.Defs
{α : Type u} {β : Type v} {m : α → β} {s : Set α} {g : Ultrafilter β} (h : m '' s ∈ g) : Ultrafilter.map m (Ultrafilter.ofComapInfPrincipal h) = g - ultrafilter_extend_eq_iff 📋 Mathlib.Topology.StoneCech
{α : Type u} {γ : Type u_1} [TopologicalSpace γ] [T2Space γ] [CompactSpace γ] {f : α → γ} {b : Ultrafilter α} {c : γ} : Ultrafilter.extend f b = c ↔ ↑(Ultrafilter.map f b) ≤ nhds c - Compactum.join_distrib 📋 Mathlib.Topology.Category.Compactum
(X : Compactum) (uux : Ultrafilter (Ultrafilter X.A)) : X.str (X.join uux) = X.str (Ultrafilter.map X.str uux) - Compactum.str_hom_commute 📋 Mathlib.Topology.Category.Compactum
(X Y : Compactum) (f : X ⟶ Y) (xs : Ultrafilter X.A) : (CategoryTheory.ConcreteCategory.hom f) (X.str xs) = Y.str (Ultrafilter.map (⇑(CategoryTheory.ConcreteCategory.hom f)) xs)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65