Loogle!
Result
Found 19 declarations mentioning UniformSpace.Completion.map.
- UniformSpace.Completion.map 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] (f : α → β) : UniformSpace.Completion α → UniformSpace.Completion β - UniformSpace.Completion.map_id 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] : UniformSpace.Completion.map id = id - UniformSpace.Completion.uniformContinuous_map 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {f : α → β} : UniformContinuous (UniformSpace.Completion.map f) - UniformSpace.Completion.map_coe 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {f : α → β} (hf : UniformContinuous f) (a : α) : UniformSpace.Completion.map f ↑a = ↑(f a) - UniformSpace.Completion.continuous_map 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {f : α → β} : Continuous (UniformSpace.Completion.map f) - UniformSpace.Completion.map_unique 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {f : α → β} {g : UniformSpace.Completion α → UniformSpace.Completion β} (hg : UniformContinuous g) (h : ∀ (a : α), ↑(f a) = g ↑a) : UniformSpace.Completion.map f = g - UniformSpace.Completion.map_comp 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {γ : Type u_3} [UniformSpace γ] {g : β → γ} {f : α → β} (hg : UniformContinuous g) (hf : UniformContinuous f) : UniformSpace.Completion.map g ∘ UniformSpace.Completion.map f = UniformSpace.Completion.map (g ∘ f) - UniformSpace.Completion.extension_map 📋 Mathlib.Topology.UniformSpace.Completion
{α : Type u_1} [UniformSpace α] {β : Type u_2} [UniformSpace β] {γ : Type u_3} [UniformSpace γ] [CompleteSpace γ] [T0Space γ] {f : β → γ} {g : α → β} (hf : UniformContinuous f) (hg : UniformContinuous g) : UniformSpace.Completion.extension f ∘ UniformSpace.Completion.map g = UniformSpace.Completion.extension (f ∘ g) - UniformSpace.Completion.instSMul.eq_1 📋 Mathlib.Topology.Algebra.UniformMulAction
(M : Type v) (X : Type x) [UniformSpace X] [SMul M X] : UniformSpace.Completion.instSMul M X = { smul := fun c => UniformSpace.Completion.map fun x => c • x } - UniformSpace.Completion.instVAdd.eq_1 📋 Mathlib.Topology.Algebra.UniformMulAction
(M : Type v) (X : Type x) [UniformSpace X] [VAdd M X] : UniformSpace.Completion.instVAdd M X = { vadd := fun c => UniformSpace.Completion.map fun x => c +ᵥ x } - UniformSpace.Completion.smul_def 📋 Mathlib.Topology.Algebra.UniformMulAction
(M : Type v) (X : Type x) [UniformSpace X] [SMul M X] (c : M) (x : UniformSpace.Completion X) : c • x = UniformSpace.Completion.map (fun x => c • x) x - UniformSpace.Completion.vadd_def 📋 Mathlib.Topology.Algebra.UniformMulAction
(M : Type v) (X : Type x) [UniformSpace X] [VAdd M X] (c : M) (x : UniformSpace.Completion X) : c +ᵥ x = UniformSpace.Completion.map (fun x => c +ᵥ x) x - Isometry.completion_map 📋 Mathlib.Topology.MetricSpace.Completion
{α : Type u} {β : Type v} [PseudoMetricSpace α] [PseudoMetricSpace β] {f : α → β} (h : Isometry f) : Isometry (UniformSpace.Completion.map f) - LipschitzWith.completion_map 📋 Mathlib.Topology.MetricSpace.Completion
{α : Type u} {β : Type v} [PseudoMetricSpace α] [PseudoMetricSpace β] {f : α → β} {K : NNReal} (h : LipschitzWith K f) : LipschitzWith K (UniformSpace.Completion.map f) - UniformSpace.Completion.map_smul_eq_mul_coe 📋 Mathlib.Topology.Algebra.UniformRing
(A : Type u_2) [Ring A] [UniformSpace A] [IsUniformAddGroup A] [IsTopologicalRing A] (R : Type u_3) [CommSemiring R] [Algebra R A] [UniformContinuousConstSMul R A] (r : R) : (UniformSpace.Completion.map fun x => r • x) = fun x => ↑((algebraMap R A) r) * x - NormedAddGroupHom.completion_coe' 📋 Mathlib.Analysis.Normed.Group.HomCompletion
{G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] (f : NormedAddGroupHom G H) (g : G) : UniformSpace.Completion.map ⇑f ↑g = ↑(f g) - NormedAddGroupHom.completion_coe_to_fun 📋 Mathlib.Analysis.Normed.Group.HomCompletion
{G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] (f : NormedAddGroupHom G H) : ⇑f.completion = UniformSpace.Completion.map ⇑f - NormedAddGroupHom.completion_def 📋 Mathlib.Analysis.Normed.Group.HomCompletion
{G : Type u_1} [SeminormedAddCommGroup G] {H : Type u_2} [SeminormedAddCommGroup H] (f : NormedAddGroupHom G H) (x : UniformSpace.Completion G) : f.completion x = UniformSpace.Completion.map (⇑f) x - UniformSpaceCat.completionFunctor_map 📋 Mathlib.Topology.Category.UniformSpace
{X✝ Y✝ : UniformSpaceCat} (f : X✝ ⟶ Y✝) : UniformSpaceCat.completionFunctor.map f = UniformSpaceCat.ofHom ⟨UniformSpace.Completion.map ⇑f.hom', ⋯⟩
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65