Loogle!
Result
Found 48 declarations mentioning Unique and Fintype.
- Finset.univ_unique 📋 Mathlib.Data.Finset.BooleanAlgebra
{α : Type u_1} [Fintype α] [Unique α] : Finset.univ = {default} - Fintype.prod_unique 📋 Mathlib.Algebra.BigOperators.Group.Finset.Basic
{M : Type u_4} {ι : Type u_7} [Fintype ι] [CommMonoid M] [Unique ι] (f : ι → M) : ∏ x, f x = f default - Fintype.sum_unique 📋 Mathlib.Algebra.BigOperators.Group.Finset.Basic
{M : Type u_4} {ι : Type u_7} [Fintype ι] [AddCommMonoid M] [Unique ι] (f : ι → M) : ∑ x, f x = f default - Unique.fintype 📋 Mathlib.Data.Fintype.Basic
{α : Type u_4} [Unique α] : Fintype α - Fintype.card_unique 📋 Mathlib.Data.Fintype.Card
{α : Type u_1} [Unique α] [h : Fintype α] : Fintype.card α = 1 - Fintype.card_eq_one_iff_nonempty_unique 📋 Mathlib.Data.Fintype.EquivFin
{α : Type u_1} [Fintype α] : Fintype.card α = 1 ↔ Nonempty (Unique α) - Matrix.det_unique 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : Type u_3} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : A.det = A default default - Matrix.trace_col_mul_row 📋 Mathlib.LinearAlgebra.Matrix.Trace
{n : Type u_3} {R : Type u_6} [Fintype n] {ι : Type u_8} [Unique ι] [NonUnitalNonAssocSemiring R] (a b : n → R) : (Matrix.replicateCol ι a * Matrix.replicateRow ι b).trace = a ⬝ᵥ b - Matrix.trace_replicateCol_mul_replicateRow 📋 Mathlib.LinearAlgebra.Matrix.Trace
{n : Type u_3} {R : Type u_6} [Fintype n] {ι : Type u_8} [Unique ι] [NonUnitalNonAssocSemiring R] (a b : n → R) : (Matrix.replicateCol ι a * Matrix.replicateRow ι b).trace = a ⬝ᵥ b - CompleteOrthogonalIdempotents.unique_iff 📋 Mathlib.RingTheory.Idempotents
{R : Type u_1} [Semiring R] {I : Type u_3} {e : I → R} [Fintype I] [Unique I] : CompleteOrthogonalIdempotents e ↔ e default = 1 - IsometryEquiv.funUnique 📋 Mathlib.Topology.MetricSpace.Isometry
(ι : Type u_2) (α : Type u) [PseudoEMetricSpace α] [Unique ι] [Fintype ι] : (ι → α) ≃ᵢ α - IsometryEquiv.funUnique_apply 📋 Mathlib.Topology.MetricSpace.Isometry
(ι : Type u_2) (α : Type u) [PseudoEMetricSpace α] [Unique ι] [Fintype ι] (f : (i : ι) → (fun a => α) i) : (IsometryEquiv.funUnique ι α) f = f default - IsometryEquiv.funUnique_symm_apply 📋 Mathlib.Topology.MetricSpace.Isometry
(ι : Type u_2) (α : Type u) [PseudoEMetricSpace α] [Unique ι] [Fintype ι] (x : α) (i : ι) : (IsometryEquiv.funUnique ι α).symm x i = x - Fintype.card_embedding_eq_of_unique 📋 Mathlib.Data.Fintype.CardEmbedding
{α : Type u_1} {β : Type u_2} [Unique α] [Fintype β] [Fintype (α ↪ β)] : Fintype.card (α ↪ β) = Fintype.card β - MeasureTheory.measurePreserving_piUnique 📋 Mathlib.MeasureTheory.Constructions.Pi
{ι : Type u_1} [Fintype ι] {X : ι → Type u_4} [Unique ι] {m : (i : ι) → MeasurableSpace (X i)} (μ : (i : ι) → MeasureTheory.Measure (X i)) : MeasureTheory.MeasurePreserving (⇑(MeasurableEquiv.piUnique X)) (MeasureTheory.Measure.pi μ) (μ default) - MeasureTheory.volume_preserving_piUnique 📋 Mathlib.MeasureTheory.Constructions.Pi
{ι : Type u_1} [Fintype ι] (X : ι → Type u_4) [Unique ι] [(i : ι) → MeasureTheory.MeasureSpace (X i)] : MeasureTheory.MeasurePreserving (⇑(MeasurableEquiv.piUnique X)) MeasureTheory.volume MeasureTheory.volume - ZSpan.coe_fract_self 📋 Mathlib.Algebra.Module.ZLattice.Basic
{ι : Type u_2} {K : Type u_3} [NormedField K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] [Fintype ι] [Unique ι] (k : K) : ZSpan.fract (Basis.singleton ι K) k = Int.fract k - ZSpan.coe_floor_self 📋 Mathlib.Algebra.Module.ZLattice.Basic
{ι : Type u_2} {K : Type u_3} [NormedField K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] [Fintype ι] [Unique ι] (k : K) : ↑(ZSpan.floor (Basis.singleton ι K) k) = ↑⌊k⌋ - Matrix.linfty_opNorm_col 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖ = ‖v‖ - Matrix.linfty_opNorm_replicateCol 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖ = ‖v‖ - Matrix.norm_col 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖ = ‖v‖ - Matrix.norm_replicateCol 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖ = ‖v‖ - Matrix.norm_replicateRow 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖ = ‖v‖ - Matrix.norm_row 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖ = ‖v‖ - Matrix.linfty_opNorm_replicateRow 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖ = ∑ i, ‖v i‖ - Matrix.linfty_opNNNorm_col 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖₊ = ‖v‖₊ - Matrix.linfty_opNNNorm_replicateCol 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖₊ = ‖v‖₊ - Matrix.nnnorm_col 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖₊ = ‖v‖₊ - Matrix.nnnorm_replicateCol 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateCol ι v‖₊ = ‖v‖₊ - Matrix.nnnorm_replicateRow 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖₊ = ‖v‖₊ - Matrix.nnnorm_row 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖₊ = ‖v‖₊ - Matrix.linfty_opNNNorm_replicateRow 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖₊ = ∑ i, ‖v i‖₊ - Matrix.linfty_opNNNorm_row 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖₊ = ∑ i, ‖v i‖₊ - Matrix.linfty_opNorm_row 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateRow ι v‖₊ = ∑ i, ‖v i‖₊ - Matrix.frobenius_norm_col 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateCol ι v‖ = ‖(WithLp.equiv 2 (n → α)).symm v‖ - Matrix.frobenius_norm_replicateCol 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateCol ι v‖ = ‖(WithLp.equiv 2 (n → α)).symm v‖ - Matrix.frobenius_norm_replicateRow 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateRow ι v‖ = ‖(WithLp.equiv 2 (m → α)).symm v‖ - Matrix.frobenius_norm_row 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateRow ι v‖ = ‖(WithLp.equiv 2 (m → α)).symm v‖ - Matrix.frobenius_nnnorm_col 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateCol ι v‖₊ = ‖(WithLp.equiv 2 (n → α)).symm v‖₊ - Matrix.frobenius_nnnorm_replicateCol 📋 Mathlib.Analysis.Matrix
{n : Type u_4} {α : Type u_5} {ι : Type u_7} [Fintype n] [Unique ι] [SeminormedAddCommGroup α] (v : n → α) : ‖Matrix.replicateCol ι v‖₊ = ‖(WithLp.equiv 2 (n → α)).symm v‖₊ - Matrix.frobenius_nnnorm_replicateRow 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateRow ι v‖₊ = ‖(WithLp.equiv 2 (m → α)).symm v‖₊ - Matrix.frobenius_nnnorm_row 📋 Mathlib.Analysis.Matrix
{m : Type u_3} {α : Type u_5} {ι : Type u_7} [Fintype m] [Unique ι] [SeminormedAddCommGroup α] (v : m → α) : ‖Matrix.replicateRow ι v‖₊ = ‖(WithLp.equiv 2 (m → α)).symm v‖₊ - instUniqueSubtypePermMemSubgroupAlternatingGroupOfSubsingleton 📋 Mathlib.GroupTheory.SpecificGroups.Alternating
(α : Type u_1) [Fintype α] [DecidableEq α] [Subsingleton α] : Unique ↥(alternatingGroup α) - Matrix.permanent_unique 📋 Mathlib.LinearAlgebra.Matrix.Permanent
{R : Type u_2} [CommSemiring R] {n : Type u_3} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : A.permanent = A default default - Matrix.det_one_add_col_mul_row 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] (u v : m → α) : (1 + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = 1 + v ⬝ᵥ u - Matrix.det_one_add_replicateCol_mul_replicateRow 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] (u v : m → α) : (1 + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = 1 + v ⬝ᵥ u - Matrix.det_add_col_mul_row 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] {A : Matrix m m α} (hA : IsUnit A.det) (u v : m → α) : (A + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = A.det * (1 + Matrix.replicateRow ι v * A⁻¹ * Matrix.replicateCol ι u).det - Matrix.det_add_replicateCol_mul_replicateRow 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] {A : Matrix m m α} (hA : IsUnit A.det) (u v : m → α) : (A + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = A.det * (1 + Matrix.replicateRow ι v * A⁻¹ * Matrix.replicateCol ι u).det
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65