Loogle!
Result
Found 12 declarations mentioning UpperSet.map.
- UpperSet.map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) : UpperSet α ≃o UpperSet β - UpperSet.map_refl 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} [Preorder α] : UpperSet.map (OrderIso.refl α) = OrderIso.refl (UpperSet α) - UpperSet.symm_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) : (UpperSet.map f).symm = UpperSet.map f.symm - UpperSet.coe_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) (s : UpperSet α) : ↑((UpperSet.map f) s) = ⇑f '' ↑s - UpperSet.mem_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {f : α ≃o β} {s : UpperSet α} {b : β} : b ∈ (UpperSet.map f) s ↔ f.symm b ∈ s - LowerSet.compl_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) (s : LowerSet α) : ((LowerSet.map f) s).compl = (UpperSet.map f) s.compl - UpperSet.compl_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) (s : UpperSet α) : ((UpperSet.map f) s).compl = (LowerSet.map f) s.compl - UpperSet.map_map 📋 Mathlib.Order.UpperLower.CompleteLattice
{α : Type u_1} {β : Type u_2} {γ : Type u_3} [Preorder α] [Preorder β] [Preorder γ] {s : UpperSet α} (g : β ≃o γ) (f : α ≃o β) : (UpperSet.map g) ((UpperSet.map f) s) = (UpperSet.map (f.trans g)) s - UpperSet.map_Ici 📋 Mathlib.Order.UpperLower.Principal
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) (a : α) : (UpperSet.map f) (UpperSet.Ici a) = UpperSet.Ici (f a) - UpperSet.map_Ioi 📋 Mathlib.Order.UpperLower.Principal
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) (a : α) : (UpperSet.map f) (UpperSet.Ioi a) = UpperSet.Ioi (f a) - upperClosure_image 📋 Mathlib.Order.UpperLower.Closure
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] {s : Set α} (f : α ≃o β) : upperClosure (⇑f '' s) = (UpperSet.map f) (upperClosure s) - UpperSet.map.eq_1 📋 Mathlib.Order.UpperLower.Closure
{α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] (f : α ≃o β) : UpperSet.map f = { toFun := fun s => { carrier := ⇑f '' ↑s, upper' := ⋯ }, invFun := fun t => { carrier := ⇑f ⁻¹' ↑t, upper' := ⋯ }, left_inv := ⋯, right_inv := ⋯, map_rel_iff' := ⋯ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65