Loogle!
Result
Found 5 declarations mentioning WeierstrassCurve.Affine.CoordinateRing.map.
- WeierstrassCurve.Affine.CoordinateRing.map 📋 Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} {S : Type s} [CommRing R] [CommRing S] (W' : WeierstrassCurve.Affine R) (f : R →+* S) : WeierstrassCurve.Affine.CoordinateRing →+* WeierstrassCurve.Affine.CoordinateRing - WeierstrassCurve.Affine.CoordinateRing.map_injective 📋 Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Affine R} {f : R →+* S} (hf : Function.Injective ⇑f) : Function.Injective ⇑(WeierstrassCurve.Affine.CoordinateRing.map W' f) - WeierstrassCurve.Affine.CoordinateRing.map.eq_1 📋 Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} {S : Type s} [CommRing R] [CommRing S] (W' : WeierstrassCurve.Affine R) (f : R →+* S) : WeierstrassCurve.Affine.CoordinateRing.map W' f = AdjoinRoot.lift ((AdjoinRoot.of (WeierstrassCurve.map W' f).toAffine.polynomial).comp (Polynomial.mapRingHom f)) (AdjoinRoot.root (WeierstrassCurve.map W' f).toAffine.polynomial) ⋯ - WeierstrassCurve.Affine.CoordinateRing.map_mk 📋 Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Affine R} (f : R →+* S) (x : Polynomial (Polynomial R)) : (WeierstrassCurve.Affine.CoordinateRing.map W' f) ((WeierstrassCurve.Affine.CoordinateRing.mk W') x) = (WeierstrassCurve.Affine.CoordinateRing.mk (WeierstrassCurve.map W' f)) (Polynomial.map (Polynomial.mapRingHom f) x) - WeierstrassCurve.Affine.CoordinateRing.map_smul 📋 Mathlib.AlgebraicGeometry.EllipticCurve.Affine.Point
{R : Type r} {S : Type s} [CommRing R] [CommRing S] {W' : WeierstrassCurve.Affine R} (f : R →+* S) (x : Polynomial R) (y : WeierstrassCurve.Affine.CoordinateRing) : (WeierstrassCurve.Affine.CoordinateRing.map W' f) (x • y) = Polynomial.map f x • (WeierstrassCurve.Affine.CoordinateRing.map W' f) y
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08