Loogle!
Result
Found 11 declarations mentioning WeierstrassCurve.VariableChange.map.
- WeierstrassCurve.VariableChange.map_id 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (C : WeierstrassCurve.VariableChange R) : WeierstrassCurve.VariableChange.map (RingHom.id R) C = C - WeierstrassCurve.VariableChange.map 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : WeierstrassCurve.VariableChange A - WeierstrassCurve.VariableChange.map_injective 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] {φ : R →+* A} (hφ : Function.Injective ⇑φ) : Function.Injective (WeierstrassCurve.VariableChange.map φ) - WeierstrassCurve.VariableChange.map_r 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : (WeierstrassCurve.VariableChange.map φ C).r = φ C.r - WeierstrassCurve.VariableChange.map_s 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : (WeierstrassCurve.VariableChange.map φ C).s = φ C.s - WeierstrassCurve.VariableChange.map_t 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : (WeierstrassCurve.VariableChange.map φ C).t = φ C.t - WeierstrassCurve.map_variableChange 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : WeierstrassCurve.VariableChange.map φ C • W.map φ = (C • W).map φ - WeierstrassCurve.VariableChange.map_map 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (C : WeierstrassCurve.VariableChange R) {A : Type v} [CommRing A] (φ : R →+* A) {B : Type w} [CommRing B] (ψ : A →+* B) : WeierstrassCurve.VariableChange.map ψ (WeierstrassCurve.VariableChange.map φ C) = WeierstrassCurve.VariableChange.map (ψ.comp φ) C - WeierstrassCurve.VariableChange.map_u 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : (WeierstrassCurve.VariableChange.map φ C).u = (Units.map ↑φ) C.u - WeierstrassCurve.VariableChange.map_baseChange 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] (C : WeierstrassCurve.VariableChange R) {S : Type s} [CommRing S] [Algebra R S] {A : Type v} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type w} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (ψ : A →ₐ[S] B) : WeierstrassCurve.VariableChange.map (↑ψ) (WeierstrassCurve.VariableChange.baseChange A C) = WeierstrassCurve.VariableChange.baseChange B C - WeierstrassCurve.VariableChange.map.eq_1 📋 Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
{R : Type u} [CommRing R] {A : Type v} [CommRing A] (φ : R →+* A) (C : WeierstrassCurve.VariableChange R) : WeierstrassCurve.VariableChange.map φ C = { u := (Units.map ↑φ) C.u, r := φ C.r, s := φ C.s, t := φ C.t }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65