Loogle!
Result
Found 7 declarations mentioning WithLp.map.
- WithLp.map 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {V : Type u_4} {V' : Type u_5} (f : V → V') (x : WithLp p V) : WithLp p V' - WithLp.map_id 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {V : Type u_4} : WithLp.map p id = id - WithLp.map.eq_1 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {V : Type u_4} {V' : Type u_5} (f : V → V') (x : WithLp p V) : WithLp.map p f x = WithLp.toLp p (f x.ofLp) - WithLp.map_comp 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {V : Type u_4} {V' : Type u_5} {V'' : Type u_6} (f : V' → V'') (g : V → V') : WithLp.map p (f ∘ g) = WithLp.map p f ∘ WithLp.map p g - WithLp.coe_congr 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {V : Type u_4} {V' : Type u_5} (f : V ≃ V') : ⇑(WithLp.congr p f) = WithLp.map p ⇑f - LinearMap.coe_withLpMap 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {K : Type u_1} {K' : Type u_2} {V : Type u_4} {V' : Type u_5} [Semiring K] [Semiring K'] {σ : K →+* K'} [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K' V'] (f : V →ₛₗ[σ] V') : ⇑(LinearMap.withLpMap p f) = WithLp.map p ⇑f - LinearEquiv.coe_withLpCongr 📋 Mathlib.Analysis.Normed.Lp.WithLp
(p : ENNReal) {K : Type u_1} {K' : Type u_2} {V : Type u_4} {V' : Type u_5} [Semiring K] [Semiring K'] {σ : K →+* K'} {σ' : K' →+* K} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] [AddCommGroup V] [Module K V] [AddCommGroup V'] [Module K' V'] (f : V ≃ₛₗ[σ] V') : ⇑(LinearEquiv.withLpCongr p f) = WithLp.map p ⇑f
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c