Loogle!
Result
Found 10 declarations mentioning WittVector.map.
- WittVector.map π Mathlib.RingTheory.WittVector.Basic
{p : β} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : R β+* S) : WittVector p R β+* WittVector p S - WittVector.map_injective π Mathlib.RingTheory.WittVector.Basic
{p : β} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : R β+* S) (hf : Function.Injective βf) : Function.Injective β(WittVector.map f) - WittVector.map_surjective π Mathlib.RingTheory.WittVector.Basic
{p : β} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : R β+* S) (hf : Function.Surjective βf) : Function.Surjective β(WittVector.map f) - WittVector.map_coeff π Mathlib.RingTheory.WittVector.Basic
{p : β} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] (f : R β+* S) (x : WittVector p R) (n : β) : ((WittVector.map f) x).coeff n = f (x.coeff n) - WittVector.IsPoly.map π Mathlib.RingTheory.WittVector.IsPoly
{p : β} {R S : Type u} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] {f : β¦R : Type uβ¦ β [CommRing R] β WittVector p R β WittVector p R} (hf : WittVector.IsPoly p f) (g : R β+* S) (x : WittVector p R) : (WittVector.map g) (f x) = f ((WittVector.map g) x) - WittVector.IsPolyβ.map π Mathlib.RingTheory.WittVector.IsPoly
{p : β} {R S : Type u} [CommRing R] [CommRing S] [Fact (Nat.Prime p)] {f : β¦R : Type uβ¦ β [CommRing R] β WittVector p R β WittVector p R β WittVector p R} (hf : WittVector.IsPolyβ p f) (g : R β+* S) (x y : WittVector p R) : (WittVector.map g) (f x y) = f ((WittVector.map g) x) ((WittVector.map g) y) - WittVector.frobenius_eq_map_frobenius π Mathlib.RingTheory.WittVector.Frobenius
(p : β) {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] [CharP R p] : WittVector.frobenius = WittVector.map (frobenius R p) - WittVector.frobeniusEquiv_symm_apply π Mathlib.RingTheory.WittVector.Frobenius
(p : β) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] [CharP R p] [PerfectRing R p] : β(WittVector.frobeniusEquiv p R).symm = β(WittVector.map β(frobeniusEquiv R p).symm) - WittVector.map_verschiebung π Mathlib.RingTheory.WittVector.Verschiebung
{p : β} {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [hp : Fact (Nat.Prime p)] (f : R β+* S) (x : WittVector p R) : (WittVector.map f) (WittVector.verschiebung x) = WittVector.verschiebung ((WittVector.map f) x) - WittVector.map_teichmuller π Mathlib.RingTheory.WittVector.Teichmuller
(p : β) {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R β+* S) (r : R) : (WittVector.map f) ((WittVector.teichmuller p) r) = (WittVector.teichmuller p) (f r)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65