Loogle!
Result
Found 45 declarations mentioning groupCohomology.map.
- groupCohomology.H0Map_id π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {B : Rep k G} (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.id B) n = CategoryTheory.CategoryStruct.id (groupCohomology B n) - groupCohomology.H1Map_id π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {B : Rep k G} (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.id B) n = CategoryTheory.CategoryStruct.id (groupCohomology B n) - groupCohomology.H2Map_id π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {B : Rep k G} (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.id B) n = CategoryTheory.CategoryStruct.id (groupCohomology B n) - groupCohomology.map_id π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {B : Rep k G} (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.id B) n = CategoryTheory.CategoryStruct.id (groupCohomology B n) - groupCohomology.mono_H0Map_of_mono π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) [CategoryTheory.Mono f] : CategoryTheory.Mono (groupCohomology.map (MonoidHom.id G) f 0) - groupCohomology.mono_map_0_of_mono π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) [CategoryTheory.Mono f] : CategoryTheory.Mono (groupCohomology.map (MonoidHom.id G) f 0) - groupCohomology.functor_map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
(k G : Type u) [CommRing k] [Group G] (n : β) {Xβ Yβ : Rep k G} (Ο : Xβ βΆ Yβ) : (groupCohomology.functor k G n).map Ο = groupCohomology.map (MonoidHom.id G) Ο n - groupCohomology.map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (n : β) : groupCohomology A n βΆ groupCohomology B n - groupCohomology.map.eq_1 π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (n : β) : groupCohomology.map f Ο n = HomologicalComplex.homologyMap (groupCohomology.cochainsMap f Ο) n - groupCohomology.Ο_map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (n : β) : CategoryTheory.CategoryStruct.comp (groupCohomology.Ο A n) (groupCohomology.map f Ο n) = CategoryTheory.CategoryStruct.comp (groupCohomology.cocyclesMap f Ο n) (groupCohomology.Ο B n) - groupCohomology.H0Map_id_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) (groupCohomology.map (MonoidHom.id G) Ο n) - groupCohomology.H1Map_id_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) (groupCohomology.map (MonoidHom.id G) Ο n) - groupCohomology.H2Map_id_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) (groupCohomology.map (MonoidHom.id G) Ο n) - groupCohomology.map_id_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) : groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) (groupCohomology.map (MonoidHom.id G) Ο n) - groupCohomology.Ο_map_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (n : β) {Z : ModuleCat k} (h : groupCohomology B n βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.Ο A n) (CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) h) = CategoryTheory.CategoryStruct.comp (groupCohomology.cocyclesMap f Ο n) (CategoryTheory.CategoryStruct.comp (groupCohomology.Ο B n) h) - groupCohomology.H1Map_one π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (Ο : (Action.res (ModuleCat k) 1).obj A βΆ B) : groupCohomology.map 1 Ο 1 = 0 - groupCohomology.map_1_one π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (Ο : (Action.res (ModuleCat k) 1).obj A βΆ B) : groupCohomology.map 1 Ο 1 = 0 - groupCohomology.mapβ_one π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (Ο : (Action.res (ModuleCat k) 1).obj A βΆ B) : groupCohomology.map 1 Ο 1 = 0 - groupCohomology.map_id_comp_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) {Z : ModuleCat k} (h : groupCohomology C n βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n) h = CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) (CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) Ο n) h) - groupCohomology.resNatTrans_app π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
(k : Type u) {G H : Type u} [CommRing k] [Group G] [Group H] (f : G β* H) (n : β) (X : Rep k H) : (groupCohomology.resNatTrans k f n).app X = groupCohomology.map f (CategoryTheory.CategoryStruct.id ((Action.res (ModuleCat k) f).obj X)) n - groupCohomology.H1InfRes_f π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] : (groupCohomology.H1InfRes A S).f = groupCohomology.map (QuotientGroup.mk' S) (A.subtype (Representation.invariants (MonoidHom.comp A.Ο S.subtype)) β―) 1 - groupCohomology.H0Map_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H β* K) (g : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (Ο : (Action.res (ModuleCat k) g).obj B βΆ C) (n : β) : groupCohomology.map (f.comp g) (CategoryTheory.CategoryStruct.comp ((Action.res (ModuleCat k) g).map Ο) Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) (groupCohomology.map g Ο n) - groupCohomology.H1Map_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H β* K) (g : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (Ο : (Action.res (ModuleCat k) g).obj B βΆ C) (n : β) : groupCohomology.map (f.comp g) (CategoryTheory.CategoryStruct.comp ((Action.res (ModuleCat k) g).map Ο) Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) (groupCohomology.map g Ο n) - groupCohomology.H2Map_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H β* K) (g : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (Ο : (Action.res (ModuleCat k) g).obj B βΆ C) (n : β) : groupCohomology.map (f.comp g) (CategoryTheory.CategoryStruct.comp ((Action.res (ModuleCat k) g).map Ο) Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) (groupCohomology.map g Ο n) - groupCohomology.map_comp π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H β* K) (g : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (Ο : (Action.res (ModuleCat k) g).obj B βΆ C) (n : β) : groupCohomology.map (f.comp g) (CategoryTheory.CategoryStruct.comp ((Action.res (ModuleCat k) g).map Ο) Ο) n = CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) (groupCohomology.map g Ο n) - groupCohomology.infNatTrans_app π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
(k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [S.Normal] (n : β) (A : Rep k G) : (groupCohomology.infNatTrans k S n).app A = groupCohomology.map (QuotientGroup.mk' S) (A.subtype (Representation.invariants (MonoidHom.comp A.Ο S.subtype)) β―) n - groupCohomology.map_comp_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H β* K) (g : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (Ο : (Action.res (ModuleCat k) g).obj B βΆ C) (n : β) {Z : ModuleCat k} (h : groupCohomology C n βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.map (f.comp g) (CategoryTheory.CategoryStruct.comp ((Action.res (ModuleCat k) g).map Ο) Ο) n) h = CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο n) (CategoryTheory.CategoryStruct.comp (groupCohomology.map g Ο n) h) - groupCohomology.H1InfRes_g π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] : (groupCohomology.H1InfRes A S).g = groupCohomology.map S.subtype (CategoryTheory.CategoryStruct.id ((Action.res (ModuleCat k) S.subtype).obj A)) 1 - groupCohomology.Ο_map_apply π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (n : β) (x : CategoryTheory.ToType (groupCohomology.cocycles A n)) : (CategoryTheory.ConcreteCategory.hom (groupCohomology.map f Ο n)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.Ο A n)) x) = (CategoryTheory.ConcreteCategory.hom (groupCohomology.Ο B n)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.cocyclesMap f Ο n)) x) - groupCohomology.H0Map_id_eq_invariantsFunctor_map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) f 0) (groupCohomology.H0Iso B).hom = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom ((Rep.invariantsFunctor k G).map f) - groupCohomology.map_id_comp_H0Iso_hom π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) f 0) (groupCohomology.H0Iso B).hom = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom ((Rep.invariantsFunctor k G).map f) - groupCohomology.H1Ο_comp_H1Map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.H1Ο A) (groupCohomology.map f Ο 1) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (groupCohomology.H1Ο B) - groupCohomology.H1Ο_comp_map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.H1Ο A) (groupCohomology.map f Ο 1) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (groupCohomology.H1Ο B) - groupCohomology.H2Ο_comp_H2Map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.H2Ο A) (groupCohomology.map f Ο 2) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (groupCohomology.H2Ο B) - groupCohomology.H2Ο_comp_map π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.H2Ο A) (groupCohomology.map f Ο 2) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (groupCohomology.H2Ο B) - groupCohomology.H0Map_comp_f π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο 0) (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso B).hom (groupCohomology.shortComplexH0 B).f) = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH0 A).f Ο.hom) - groupCohomology.map_H0Iso_hom_f π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) : CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο 0) (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso B).hom (groupCohomology.shortComplexH0 B).f) = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH0 A).f Ο.hom) - groupCohomology.H1Ο_comp_map_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) {Z : ModuleCat k} (h : groupCohomology B 1 βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.H1Ο A) (CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο 1) h) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (CategoryTheory.CategoryStruct.comp (groupCohomology.H1Ο B) h) - groupCohomology.map_H0Iso_hom_f_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) {Z : ModuleCat k} (h : (groupCohomology.shortComplexH0 B).Xβ βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο 0) (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso B).hom (CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH0 B).f h)) = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH0 A).f (CategoryTheory.CategoryStruct.comp Ο.hom h)) - groupCohomology.map_id_comp_H0Iso_hom_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) {Z : ModuleCat k} (h : ModuleCat.of k β₯B.Ο.invariants βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.map (MonoidHom.id G) f 0) (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso B).hom h) = CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp ((Rep.invariantsFunctor k G).map f) h) - groupCohomology.H2Ο_comp_map_assoc π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) {Z : ModuleCat k} (h : groupCohomology B 2 βΆ Z) : CategoryTheory.CategoryStruct.comp (groupCohomology.H2Ο A) (CategoryTheory.CategoryStruct.comp (groupCohomology.map f Ο 2) h) = CategoryTheory.CategoryStruct.comp (groupCohomology.mapCocyclesβ f Ο) (CategoryTheory.CategoryStruct.comp (groupCohomology.H2Ο B) h) - groupCohomology.map_id_comp_H0Iso_hom_apply π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) (x : CategoryTheory.ToType (groupCohomology A 0)) : (CategoryTheory.ConcreteCategory.hom (groupCohomology.H0Iso B).hom) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.map (MonoidHom.id G) f 0)) x) = (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom ((Rep.invariantsFunctor k G).map f)) x - groupCohomology.map_H0Iso_hom_f_apply π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (x : CategoryTheory.ToType (groupCohomology A 0)) : (CategoryTheory.ConcreteCategory.hom (groupCohomology.shortComplexH0 B).f) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.H0Iso B).hom) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.map f Ο 0)) x)) = (CategoryTheory.CategoryStruct.comp (groupCohomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp (groupCohomology.shortComplexH0 A).f Ο.hom)) x - groupCohomology.H1Ο_comp_map_apply π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (x : CategoryTheory.ToType (ModuleCat.of k β₯(groupCohomology.cocyclesβ A))) : (CategoryTheory.ConcreteCategory.hom (groupCohomology.map f Ο 1)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.H1Ο A)) x) = (CategoryTheory.ConcreteCategory.hom (groupCohomology.H1Ο B)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.mapCocyclesβ f Ο)) x) - groupCohomology.H2Ο_comp_map_apply π Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G β* H) (Ο : (Action.res (ModuleCat k) f).obj A βΆ B) (x : CategoryTheory.ToType (ModuleCat.of k β₯(groupCohomology.cocyclesβ A))) : (CategoryTheory.ConcreteCategory.hom (groupCohomology.map f Ο 2)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.H2Ο A)) x) = (CategoryTheory.ConcreteCategory.hom (groupCohomology.H2Ο B)) ((CategoryTheory.ConcreteCategory.hom (groupCohomology.mapCocyclesβ f Ο)) x)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65