Loogle!
Result
Found 29 declarations mentioning groupHomology.map.
- groupHomology.map_id π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A : Rep k G} (n : β) : groupHomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.id A) n = CategoryTheory.CategoryStruct.id (groupHomology A n) - groupHomology.epi_map_0_of_epi π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) [CategoryTheory.Epi f] : CategoryTheory.Epi (groupHomology.map (MonoidHom.id G) f 0) - groupHomology.functor_map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
(k G : Type u) [CommRing k] [Group G] (n : β) {A B : Rep k G} (Ο : A βΆ B) : (groupHomology.functor k G n).map Ο = groupHomology.map (MonoidHom.id G) Ο n - groupHomology.map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (n : β) : groupHomology A n βΆ groupHomology B n - groupHomology.map.eq_1 π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (n : β) : groupHomology.map f Ο n = HomologicalComplex.homologyMap (groupHomology.chainsMap f Ο) n - groupHomology.Ο_map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (n : β) : CategoryTheory.CategoryStruct.comp (groupHomology.Ο A n) (groupHomology.map f Ο n) = CategoryTheory.CategoryStruct.comp (groupHomology.cyclesMap f Ο n) (groupHomology.Ο B n) - groupHomology.map_id_comp π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (Ο : A βΆ B) (Ο : B βΆ C) (n : β) : groupHomology.map (MonoidHom.id G) (CategoryTheory.CategoryStruct.comp Ο Ο) n = CategoryTheory.CategoryStruct.comp (groupHomology.map (MonoidHom.id G) Ο n) (groupHomology.map (MonoidHom.id G) Ο n) - groupHomology.Ο_map_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (n : β) {Z : ModuleCat k} (h : groupHomology B n βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.Ο A n) (CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο n) h) = CategoryTheory.CategoryStruct.comp (groupHomology.cyclesMap f Ο n) (CategoryTheory.CategoryStruct.comp (groupHomology.Ο B n) h) - groupHomology.mapβ_one π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (Ο : A βΆ (Action.res (ModuleCat k) 1).obj B) : groupHomology.map 1 Ο 1 = 0 - groupHomology.coresNatTrans_app π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
(k : Type u) {G H : Type u} [CommRing k] [Group G] [Group H] (f : G β* H) (n : β) (X : Action (ModuleCat k) H) : (groupHomology.coresNatTrans k f n).app X = groupHomology.map f (CategoryTheory.CategoryStruct.id ((Action.res (ModuleCat k) f).obj X)) n - groupHomology.H0Ο_comp_map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) : CategoryTheory.CategoryStruct.comp (groupHomology.H0Ο A) (groupHomology.map f Ο 0) = CategoryTheory.CategoryStruct.comp Ο.hom (groupHomology.H0Ο B) - groupHomology.map_id_comp_H0Iso_hom π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) : CategoryTheory.CategoryStruct.comp (groupHomology.map (MonoidHom.id G) f 0) (groupHomology.H0Iso B).hom = CategoryTheory.CategoryStruct.comp (groupHomology.H0Iso A).hom ((Rep.coinvariantsFunctor k G).map f) - groupHomology.map_id_comp_H0Iso_hom_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) {Z : ModuleCat k} (h : (Rep.coinvariantsFunctor k G).obj B βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.map (MonoidHom.id G) f 0) (CategoryTheory.CategoryStruct.comp (groupHomology.H0Iso B).hom h) = CategoryTheory.CategoryStruct.comp (groupHomology.H0Iso A).hom (CategoryTheory.CategoryStruct.comp ((Rep.coinvariantsFunctor k G).map f) h) - groupHomology.H0Ο_comp_map_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) {Z : ModuleCat k} (h : groupHomology B 0 βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.H0Ο A) (CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο 0) h) = CategoryTheory.CategoryStruct.comp Ο.hom (CategoryTheory.CategoryStruct.comp (groupHomology.H0Ο B) h) - groupHomology.map_1_quotientGroupMk'_epi π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] [Representation.IsTrivial (MonoidHom.comp A.Ο S.subtype)] : CategoryTheory.Epi (groupHomology.map (QuotientGroup.mk' S) (A.resOfQuotientIso S).inv 1) - groupHomology.H1CoresCoinfOfTrivial_g π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] [Representation.IsTrivial (MonoidHom.comp A.Ο S.subtype)] : (groupHomology.H1CoresCoinfOfTrivial A S).g = groupHomology.map (QuotientGroup.mk' S) (A.resOfQuotientIso S).inv 1 - groupHomology.map_comp π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G β* H) (g : H β* K) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (Ο : B βΆ (Action.res (ModuleCat k) g).obj C) (n : β) : groupHomology.map (g.comp f) (CategoryTheory.CategoryStruct.comp Ο ((Action.res (ModuleCat k) f).map Ο)) n = CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο n) (groupHomology.map g Ο n) - groupHomology.coinfNatTrans_app π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
(k : Type u) {G : Type u} [CommRing k] [Group G] (S : Subgroup G) [S.Normal] (n : β) (A : Rep k G) : (groupHomology.coinfNatTrans k S n).app A = groupHomology.map (QuotientGroup.mk' S) (A.mkQ (Representation.Coinvariants.ker (MonoidHom.comp A.Ο S.subtype)) β―) n - groupHomology.map_comp_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k G} {B : Rep k H} {C : Rep k K} (f : G β* H) (g : H β* K) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (Ο : B βΆ (Action.res (ModuleCat k) g).obj C) (n : β) {Z : ModuleCat k} (h : groupHomology C n βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.map (g.comp f) (CategoryTheory.CategoryStruct.comp Ο ((Action.res (ModuleCat k) f).map Ο)) n) h = CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο n) (CategoryTheory.CategoryStruct.comp (groupHomology.map g Ο n) h) - groupHomology.Ο_map_apply π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (n : β) (x : CategoryTheory.ToType (groupHomology.cycles A n)) : (CategoryTheory.ConcreteCategory.hom (groupHomology.map f Ο n)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.Ο A n)) x) = (CategoryTheory.ConcreteCategory.hom (groupHomology.Ο B n)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.cyclesMap f Ο n)) x) - groupHomology.H1CoresCoinfOfTrivial_f π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] [Representation.IsTrivial (MonoidHom.comp A.Ο S.subtype)] : (groupHomology.H1CoresCoinfOfTrivial A S).f = groupHomology.map S.subtype (CategoryTheory.CategoryStruct.id ((Action.res (ModuleCat k) S.subtype).obj A)) 1 - groupHomology.H0Ο_comp_map_apply π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (x : CategoryTheory.ToType A.V) : (CategoryTheory.ConcreteCategory.hom (groupHomology.map f Ο 0)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.H0Ο A)) x) = (CategoryTheory.ConcreteCategory.hom (groupHomology.H0Ο B)) ((CategoryTheory.ConcreteCategory.hom Ο.hom) x) - groupHomology.map_id_comp_H0Iso_hom_apply π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A βΆ B) (x : CategoryTheory.ToType (groupHomology A 0)) : (CategoryTheory.ConcreteCategory.hom (groupHomology.H0Iso B).hom) ((CategoryTheory.ConcreteCategory.hom (groupHomology.map (MonoidHom.id G) f 0)) x) = (Representation.Coinvariants.map A.Ο B.Ο (ModuleCat.Hom.hom f.hom) β―) ((CategoryTheory.ConcreteCategory.hom (groupHomology.H0Iso A).hom) x) - groupHomology.H1Ο_comp_map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) : CategoryTheory.CategoryStruct.comp (groupHomology.H1Ο A) (groupHomology.map f Ο 1) = CategoryTheory.CategoryStruct.comp (groupHomology.mapCyclesβ f Ο) (groupHomology.H1Ο B) - groupHomology.H2Ο_comp_map π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) : CategoryTheory.CategoryStruct.comp (groupHomology.H2Ο A) (groupHomology.map f Ο 2) = CategoryTheory.CategoryStruct.comp (groupHomology.mapCyclesβ f Ο) (groupHomology.H2Ο B) - groupHomology.H1Ο_comp_map_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) {Z : ModuleCat k} (h : groupHomology B 1 βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.H1Ο A) (CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο 1) h) = CategoryTheory.CategoryStruct.comp (groupHomology.mapCyclesβ f Ο) (CategoryTheory.CategoryStruct.comp (groupHomology.H1Ο B) h) - groupHomology.H2Ο_comp_map_assoc π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) {Z : ModuleCat k} (h : groupHomology B 2 βΆ Z) : CategoryTheory.CategoryStruct.comp (groupHomology.H2Ο A) (CategoryTheory.CategoryStruct.comp (groupHomology.map f Ο 2) h) = CategoryTheory.CategoryStruct.comp (groupHomology.mapCyclesβ f Ο) (CategoryTheory.CategoryStruct.comp (groupHomology.H2Ο B) h) - groupHomology.H1Ο_comp_map_apply π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (x : CategoryTheory.ToType (ModuleCat.of k β₯(groupHomology.cyclesβ A))) : (CategoryTheory.ConcreteCategory.hom (groupHomology.map f Ο 1)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.H1Ο A)) x) = (CategoryTheory.ConcreteCategory.hom (groupHomology.H1Ο B)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.mapCyclesβ f Ο)) x) - groupHomology.H2Ο_comp_map_apply π Mathlib.RepresentationTheory.Homological.GroupHomology.Functoriality
{k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k G} {B : Rep k H} (f : G β* H) (Ο : A βΆ (Action.res (ModuleCat k) f).obj B) (x : CategoryTheory.ToType (ModuleCat.of k β₯(groupHomology.cyclesβ A))) : (CategoryTheory.ConcreteCategory.hom (groupHomology.map f Ο 2)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.H2Ο A)) x) = (CategoryTheory.ConcreteCategory.hom (groupHomology.H2Ο B)) ((CategoryTheory.ConcreteCategory.hom (groupHomology.mapCyclesβ f Ο)) x)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65