Loogle!
Result
Found 6 declarations mentioning ContinuousWithinAt and intervalIntegral.
- intervalIntegral.continuousWithinAt_primitive ๐ Mathlib.MeasureTheory.Integral.DominatedConvergence
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ E] {a bโ bโ bโ : โ} {ฮผ : MeasureTheory.Measure โ} {f : โ โ E} (hbโ : ฮผ {bโ} = 0) (h_int : IntervalIntegrable f ฮผ (min a bโ) (max a bโ)) : ContinuousWithinAt (fun b => โซ (x : โ) in a..b, f x โฮผ) (Set.Icc bโ bโ) bโ - intervalIntegral.continuousWithinAt_of_dominated_interval ๐ Mathlib.MeasureTheory.Integral.DominatedConvergence
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ E] {ฮผ : MeasureTheory.Measure โ} {X : Type u_3} [TopologicalSpace X] [FirstCountableTopology X] {F : X โ โ โ E} {xโ : X} {bound : โ โ โ} {a b : โ} {s : Set X} (hF_meas : โแถ (x : X) in nhdsWithin xโ s, MeasureTheory.AEStronglyMeasurable (F x) (ฮผ.restrict (Set.uIoc a b))) (h_bound : โแถ (x : X) in nhdsWithin xโ s, โแต (t : โ) โฮผ, t โ Set.uIoc a b โ โF x tโ โค bound t) (bound_integrable : IntervalIntegrable bound ฮผ a b) (h_cont : โแต (t : โ) โฮผ, t โ Set.uIoc a b โ ContinuousWithinAt (fun x => F x t) s xโ) : ContinuousWithinAt (fun x => โซ (t : โ) in a..b, F x t โฮผ) s xโ - intervalIntegral.derivWithin_integral_right ๐ Mathlib.MeasureTheory.Integral.IntervalIntegral.FundThmCalculus
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {a b : โ} (hf : IntervalIntegrable f MeasureTheory.volume a b) {s t : Set โ} [intervalIntegral.FTCFilter b (nhdsWithin b s) (nhdsWithin b t)] (hmeas : StronglyMeasurableAtFilter f (nhdsWithin b t) MeasureTheory.volume) (hb : ContinuousWithinAt f t b) (hs : UniqueDiffWithinAt โ s b := by uniqueDiffWithinAt_Ici_Iic_univ) : derivWithin (fun u => โซ (x : โ) in a..u, f x) s b = f b - intervalIntegral.derivWithin_integral_left ๐ Mathlib.MeasureTheory.Integral.IntervalIntegral.FundThmCalculus
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {a b : โ} (hf : IntervalIntegrable f MeasureTheory.volume a b) {s t : Set โ} [intervalIntegral.FTCFilter a (nhdsWithin a s) (nhdsWithin a t)] (hmeas : StronglyMeasurableAtFilter f (nhdsWithin a t) MeasureTheory.volume) (ha : ContinuousWithinAt f t a) (hs : UniqueDiffWithinAt โ s a := by uniqueDiffWithinAt_Ici_Iic_univ) : derivWithin (fun u => โซ (x : โ) in u..b, f x) s a = -f a - intervalIntegral.integral_hasDerivWithinAt_right ๐ Mathlib.MeasureTheory.Integral.IntervalIntegral.FundThmCalculus
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {a b : โ} (hf : IntervalIntegrable f MeasureTheory.volume a b) {s t : Set โ} [intervalIntegral.FTCFilter b (nhdsWithin b s) (nhdsWithin b t)] (hmeas : StronglyMeasurableAtFilter f (nhdsWithin b t) MeasureTheory.volume) (hb : ContinuousWithinAt f t b) : HasDerivWithinAt (fun u => โซ (x : โ) in a..u, f x) (f b) s b - intervalIntegral.integral_hasDerivWithinAt_left ๐ Mathlib.MeasureTheory.Integral.IntervalIntegral.FundThmCalculus
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {a b : โ} (hf : IntervalIntegrable f MeasureTheory.volume a b) {s t : Set โ} [intervalIntegral.FTCFilter a (nhdsWithin a s) (nhdsWithin a t)] (hmeas : StronglyMeasurableAtFilter f (nhdsWithin a t) MeasureTheory.volume) (ha : ContinuousWithinAt f t a) : HasDerivWithinAt (fun u => โซ (x : โ) in u..b, f x) (-f a) s a
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision c3b95a7